circuit.zip

Program do symulacji włączników żarówek itp.

Proszę Do odpalenia potrzebna Java

  • circuit.zip
    • e-tl.html
    • e-volttriple.html
    • e-filt-lopass.html
    • ex-gyrator.html
    • e-tdiode.html
    • e-555saw.html
    • e-nandff.html
    • e-tlterm.html
    • ex-555int.html
    • e-eclnor.html
    • e-gyrator.html
    • e-graycode.html
    • e-voltdouble.html
    • e-capac.html
    • e-cmosnor.html
    • e-crossover.html
    • e-mosmirror.html
    • e-mosfetamp.html
    • e-transswitch.html
    • e-tdrelax.html
    • e-eclosc.html
    • e-cmosinvertercap.html
    • e-multivib-bi.html
    • e-spark-marx.html
    • e-filt-hipass-af.html
    • directions.html
    • e-zenerreffollow.html
    • e-capmultcaps.html
    • e-indpar.html
    • e-voltdivide.html
    • e-amp-sum.html
    • e-cmostransgate.html
    • favicon.ico
    • e-vco.html
    • e-cmosinverterslow.html
    • e-counter8.html
    • e-xor.html
    • e-opampfeedback.html
    • e-pushpullxover.html
    • e-mosswitch.html
    • e-rtlnand.html
    • e-opamp-regulator.html
    • e-tlfreq.html
    • e-edgedff.html
    • e-voltquad.html
    • e-phasesplit.html
    • e-trans-diffamp-cursrc.html
    • e-fulladd.html
    • e-mr-square.html
    • e-index.html
    • e-amp-diff.html
    • e-logconvert.html
    • e-passlp.html
    • e-multivib-a.html
    • e-filt-hipass-l.html
    • e-transformerdc.html
    • e-inv-osc.html
    • e-cap.html
    • e-res-par.html
    • e-mr-triangle.html
    • e-diodeclip.html
    • e-dtlnand.html
    • e-powerfactor2.html
    • e-amp-noninvert.html
    • e-inductac.html
    • e-voltinvert.html
    • e-zenerref.html
    • setuplist.txt
    • e-tlmatch2.html
    • e-switchfilter.html
    • e-cmosinverter.html
    • e-cmosmsff.html
    • e-majority.html
    • e-555missing.html
    • e-tlmismatch.html
    • e-lrc.html
    • e-multivib-mono.html
    • e-fullrectf.html
    • e-rtlinverter.html
    • e-masterslaveff.html
    • e-indmultind.html
    • e-4way.html
    • e-digcompare.html
    • e-transformerdown.html
    • e-notch.html
    • e-induct.html
    • e-counter.html
    • e-cmosnand.html
    • e-555square.html
    • e-amp-schmitt.html
    • e-that.html
    • e-cmosxor.html
    • e-cappar.html
    • e-peak-detect.html
    • e-transformer.html
    • e-jkff.html
    • e-3way.html
    • e-divideby3.html
    • e-lrc-critical.html
    • e-bandpass.html
    • e-555schmitt.html
    • e-opamp.html
    • e-howland.html
    • e-invertamp.html
    • e-sinediode.html
    • e-mr.html
    • e-moscurrentramp.html
    • e-mr-sine2.html
    • e-diodecurve.html
    • e-delayrc.html
    • e-555monostable.html
    • e-moscurrentsrc.html
    • e-inductkick.html
    • e-pushpull.html
    • e-7segdecoder.html
    • e-mirror.html
    • e-phaseseq.html
    • ex-multivib-m.html
    • ex-multivib-b.html
    • e-colpitts.html
    • e-indmultfreq.html
    • e-mux3state.html
    • e-rectify.html
    • e-relaxosc.html
    • e-decoder.html
    • e-to.html
    • Array
    • e-dram.html
    • e-follower.html
    • e-phaseoscfilt.html
    • e-3-invert.html
    • e-traffic.html
    • e-555pulsemod.html
    • e-triangle.html
    • e-leadingedge.html
    • e-mr-sine.html
    • e-amp-fullrect.html
    • e-dcrestoration.html
    • e-inductkick-snub.html
    • e-filt-hipass.html
    • e-samplenhold.html
    • e-norton.html
    • e-capmultfreq.html
    • ex-555.html
    • e-filt-lopass-l.html
    • e-powerfactor1.html
    • e-sine.html
    • e-mux.html
    • e-sawtooth.html
    • e-555sequencer.html
    • e-amp-dfdx.html
    • e-classd.html
    • circuit.jar
    • e-ladder.html
    • e-currentsrcramp.html
    • e-amp-rect.html
    • e-555int.html
    • e-555lowduty.html
    • e-johnsonctr.html
    • e-indseries.html
    • e-tllopass.html
    • e-tesla.html
    • ex-multivib.html
    • e-diodevar.html
    • e-ohms.html
    • e-nmosfet.html
    • e-thevenin.html
    • e-tllight.html
    • e-tlmatch1.html
    • e-halfadd.html
    • e-ttlnand.html
    • e-pnp.html
    • e-mr-sine3.html
    • e-pmosfet.html
    • e-impedance.html
    • e-capmult.html
    • e-trans-diffamp-common.html
    • e-ceamp.html
    • e-amp-invert.html
    • e-resistors.html
    • e-transformerup.html
    • src.zip
    • e-capseries.html
    • e-spikegen.html
    • e-zeneriv.html
    • e-trans-diffamp.html
    • e-currentsrcelm.html
    • e-clockedsrff.html
    • e-diodelimit.html
    • ex-555mono.html
    • e-wheatstone.html
    • e-ttlnor.html
    • e-deccounter.html
    • e-amp-integ.html
    • e-currentsrc.html
    • e-amdetect.html
    • e-divideby2.html
    • e-itov.html
    • e-mosfollower.html
    • e-nic-r.html
    • e-amp-follower.html
    • e-diff.html
    • e-longdist.html
    • e-res-series.html
    • index.html
    • e-cmosff.html
    • e-synccounter.html
    • e-twint.html
    • e-hartley.html
    • e-tlstand.html
    • e-fullrect.html
    • e-phaseshiftosc.html
    • e-spark-sawtooth.html
    • e-schmitt.html
    • e-inductkick-block.html
    • e-npn.html
    • e-tlmis1.html


Pobierz plik - link do postu

circuit.zip > hartley.txt

$ 1 5.0E-6 3.333936307694169 54 5.0 50
t 256 128 304 128 0 1 -5.22517933037985 -0.6454813682869913 100.0
w 80 304 192 304 0
w 80 128 192 128 0
w 192 128 256 128 0
w 192 224 304 224 0
w 304 144 304 224 0
w 304 112 352 112 0
r 352 112 352 304 0 1000.0
w 192 304 352 304 0
r 304 112 304 48 0 100.0
R 304 48 256 48 0 0 40.0 5.0 0.0 0.0 0.5
g 304 224 304 256 0
O 352 112 432 112 0
l 192 128 192 224 0 1.5 -0.001126760367703781
l 192 224 192 304 0 0.5 -0.005329780746696711
c 80 128 80 304 0 6.33E-7 -1.0221589514366398
x 157 182 176 186 0 16 L1
x 157 273 176 277 0 16 L2
o 12 32 0 42 5.0 9.765625E-5 0 -1


circuit.zip > ladder.txt

$ 17 5.0E-6 3 44 5.0 35
v 64 128 64 48 0 5 40.0 5.0 0.0
w 64 128 112 128 0
l 64 48 112 48 0 0.01 0.0
l 112 48 160 48 0 0.01 0.0
l 160 48 208 48 0 0.01 0.0
l 208 48 256 48 0 0.01 0.0
l 256 48 304 48 0 0.01 0.0
l 304 48 352 48 0 0.01 0.0
l 352 48 400 48 0 0.01 0.0
c 112 48 112 128 0 1.0E-4 0.0
c 160 48 160 128 0 1.0E-4 0.0
c 208 48 208 128 0 1.0E-4 0.0
c 256 48 256 128 0 1.0E-4 0.0
c 304 48 304 128 0 1.0E-4 0.0
c 352 48 352 128 0 1.0E-4 0.0
c 400 48 400 128 0 1.0E-4 0.0
w 112 128 160 128 0
w 160 128 208 128 0
w 208 128 256 128 0
w 256 128 304 128 0
w 304 128 352 128 0
w 352 128 400 128 0
l 400 48 448 48 0 0.01 0.0
w 448 48 448 160 0
w 400 128 432 128 0
w 448 160 400 160 0
c 400 160 400 240 0 1.0E-4 0.0
l 400 160 352 160 0 0.01 0.0
l 352 160 304 160 0 0.01 0.0
l 304 160 256 160 0 0.01 0.0
l 256 160 208 160 0 0.01 0.0
l 208 160 160 160 0 0.01 0.0
l 160 160 112 160 0 0.01 0.0
c 352 160 352 240 0 1.0E-4 0.0
c 304 160 304 240 0 1.0E-4 0.0
c 256 160 256 240 0 1.0E-4 0.0
c 208 160 208 240 0 1.0E-4 0.0
c 160 160 160 240 0 1.0E-4 0.0
c 112 160 112 240 0 1.0E-4 0.0
w 432 128 432 240 0
w 432 240 400 240 0
w 400 240 352 240 0
w 352 240 304 240 0
w 304 240 256 240 0
w 256 240 208 240 0
w 208 240 160 240 0
w 160 240 112 240 0
l 112 160 64 160 0 0.01 0.0
w 64 160 64 272 0
w 112 240 80 240 0
w 64 272 112 272 0
c 112 272 112 352 0 1.0E-4 0.0
w 80 240 80 352 0
w 80 352 112 352 0
l 112 272 160 272 0 0.01 0.0
l 160 272 208 272 0 0.01 0.0
l 208 272 256 272 0 0.01 0.0
l 256 272 304 272 0 0.01 0.0
l 304 272 352 272 0 0.01 0.0
l 352 272 400 272 0 0.01 0.0
c 160 272 160 352 0 1.0E-4 0.0
c 208 272 208 352 0 1.0E-4 0.0
c 256 272 256 352 0 1.0E-4 0.0
c 304 272 304 352 0 1.0E-4 0.0
c 352 272 352 352 0 1.0E-4 0.0
w 112 352 160 352 0
w 160 352 208 352 0
w 208 352 256 352 0
w 256 352 304 352 0
w 304 352 352 352 0
w 352 352 400 352 0
c 400 272 400 352 0 1.0E-4 0.0
w 400 272 432 272 0
w 432 352 400 352 0
r 432 272 432 352 0 10.0
g 432 352 432 384 0
o 0 64 0 3 10.0 0.8
o 74 64 0 3 10.0 0.8


circuit.zip > fullrectf.txt

$ 1 5.0E-6 10 50 5.0 48
v 96 336 96 48 0 1 40.0 5.0 0.0
w 96 48 224 48 0
w 224 48 224 112 0
d 224 112 288 176 0
d 224 240 288 176 0
d 160 176 224 112 0
d 160 176 224 240 0
w 224 240 224 336 0
w 224 336 96 336 0
w 160 176 160 272 0
w 288 176 336 176 0
w 160 272 336 272 0
c 336 176 336 272 0 1.02E-4 3.2105610440835166
w 336 176 416 176 0
w 336 272 416 272 0
r 416 176 416 272 0 430.0
x 451 232 457 232 0 16 load
o 0 32 0 2 5.0 9.765625E-5
o 15 32 0 3 5.0 0.0125


circuit.zip > diodevar.txt

$ 1 5.0E-6 10.391409633455755 50 1.0 50
172 336 176 336 128 0 6 0.72 0.77 -1.0 0.0 0.5 Voltage
w 336 304 336 336 1
g 336 336 336 352 0
d 336 176 336 304 0


circuit.zip > sinediode.txt

$ 1 5.0E-6 3.58 58 5.0 59
d 96 320 96 224 0
d 112 224 112 272 0
w 80 272 112 272 0
r 80 272 32 272 0 100.0
r 16 320 96 320 0 100.0
r 112 272 160 272 0 33.0
r 96 320 176 320 0 33.0
w 160 272 192 272 0
d 176 320 176 224 0
d 192 224 192 272 0
d 256 320 256 224 0
d 272 224 272 272 0
w 272 272 240 272 0
r 176 320 256 320 0 82.0
r 192 272 240 272 0 82.0
r 256 320 336 320 0 47.0
d 336 320 336 224 0
d 352 224 352 272 0
w 352 272 320 272 0
r 272 272 320 272 0 47.0
r 336 320 416 320 0 30.0
r 416 320 496 320 0 39.0
d 416 320 416 224 0
d 496 320 496 224 0
d 432 224 432 272 0
d 512 224 512 272 0
w 400 272 432 272 0
w 480 272 512 272 0
r 352 272 400 272 0 30.0
r 432 272 480 272 0 39.0
R 512 272 560 272 0 0 40.0 2.4 0.0
R 496 320 560 320 0 0 40.0 -2.4 0.0
w 96 224 112 224 0
w 176 224 192 224 0
w 256 224 272 224 0
w 336 224 352 224 0
w 416 224 432 224 0
w 496 224 512 224 0
r 112 224 112 144 0 2000.0
r 192 224 192 144 0 1000.0
r 272 224 272 144 0 470.0
r 352 224 352 144 0 330.0
r 432 224 432 144 0 120.0
w 112 144 192 144 0
w 192 144 272 144 0
w 272 144 352 144 0
w 352 144 432 144 0
w 432 144 512 144 0
r 112 144 64 144 0 200.0
R 64 144 32 144 0 3 80.0 5.0 0.0
O 512 144 560 144 0
w 512 144 512 224 0
w 16 320 16 272 0
w 16 272 32 272 0
o 49 32 0 35 5.0 0.025 0 0
o 50 32 0 34 5.0 9.765625E-5 1 -1


circuit.zip > halfadd.txt

$ 1 5.0E-6 1.5 50 5.0
154 224 240 368 240 0 2 0.0
150 224 144 368 144 0 2 0.0
L 128 160 80 160 2 true false
L 128 224 80 224 2 true false
w 128 224 160 224 0
w 160 224 160 128 0
w 160 128 224 128 0
w 160 224 224 224 0
w 128 160 192 160 0
w 192 160 192 256 0
w 192 256 224 256 0
w 192 160 224 160 0
M 368 144 416 144 2
M 368 240 416 240 2


circuit.zip > nmosfet.txt

$ 1 5.0E-6 10.391409633455755 50 5.0 50
f 304 240 352 240 0 1.5
172 304 240 272 240 0 6 3.5 5.0 0.0 0.0 0.5 Gate Voltage
w 352 256 352 304 0
w 352 224 352 176 1
172 352 176 352 144 0 6 5.0 5.0 0.0 0.0 0.5 Drain Voltage
g 352 304 352 320 0
o 0 64 0 35 5.0 0.2 0 -1


circuit.zip > zenerreffollow.txt

$ 1 5.0E-6 10.20027730826997 56 5.0 50
R 240 128 192 128 0 1 40.0 2.0 8.8 0.0 0.5
w 240 128 320 128 0
r 320 128 320 208 0 10000.0
t 320 208 400 208 0 1 -3.046294556431631 0.6320971159170448 100.0
r 400 128 400 192 0 100.0
w 320 128 400 128 0
z 320 320 320 208 1 0.805904783 5.6
w 400 224 400 256 0
w 400 256 448 256 0
r 448 256 448 320 0 500.0
g 448 320 448 336 0
g 320 320 320 336 0
o 0 64 0 34 12.0 0.00625 0 -1 in
o 9 64 0 35 5.0 0.0125 1 -1 out
o 6 64 0 35 10.0 7.8125E-4 2 -1 zener


circuit.zip > cc2n.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
179 272 224 304 224 0 -1.0
r 368 256 480 256 0 100.0
g 480 256 480 288 0
172 272 288 192 288 0 6 4.5 5.0 0.0 0.0 0.5 Y Voltage
174 272 224 208 176 0 1000.0 0.5 X Resistance
r 240 176 144 176 0 100.0
g 144 176 144 192 0


circuit.zip > dtlnor.txt

$ 1 5.0E-6 10 54 5.0
t 160 240 208 240 0 1 0.5852076661116881 0.6224167269731172
r 128 160 128 80 0 4700.0
R 128 80 64 80 0 0 40.0 5.0 0.0
w 128 80 208 80 0
t 320 240 368 240 0 1 0.5852076661116883 0.6224167269731175
r 288 80 288 160 0 4700.0
w 208 80 288 80 0
w 288 80 368 80 0
r 368 80 368 160 0 1000.0
w 368 160 416 160 0
M 416 160 480 160 0
r 208 80 208 160 0 1000.0
w 208 160 208 192 0
w 368 160 368 224 0
w 208 192 416 192 0
w 416 192 416 160 0
w 208 192 208 224 0
d 128 240 160 240 0
d 128 240 96 240 0
d 288 240 320 240 0
d 288 240 256 240 0
w 128 160 128 240 0
w 288 160 288 240 0
L 256 240 256 288 0 false false
g 208 256 208 320 0
g 368 256 368 320 0
L 96 240 96 288 0 false false


circuit.zip > mirror.txt

$ 1 5.0E-6 11.708435524800691 50 5.0 50
t 256 112 192 112 0 -1 0.0 -0.625292103755946 1000.0
t 256 112 320 112 0 -1 2.5545208310942042 -0.6252921037557799 1000.0
w 256 112 256 160 0
w 192 128 192 160 0
w 192 160 256 160 0
r 192 96 192 32 0 100.0
r 320 96 320 32 0 100.0
w 192 32 320 32 0
R 192 32 128 32 0 0 40.0 5.0 0.0 0.0 0.5
r 192 160 192 224 0 500.0
r 320 128 320 224 0 150.0
w 192 160 128 160 0
s 128 160 128 224 0 1 false
r 128 224 192 224 0 200.0
w 320 128 384 128 0
s 384 128 384 224 0 1 false
r 320 224 384 224 0 10.0
w 192 224 192 288 1
w 320 224 320 288 1
g 192 288 192 304 0
g 320 288 320 304 0
x 159 112 181 116 0 16 Q1
x 332 113 354 117 0 16 Q2


circuit.zip > follower.txt

$ 1 5.0E-6 10 50 5.0
w 256 96 352 96 0
r 256 96 256 192 0 800.0
r 256 192 256 304 0 800.0
t 256 192 352 192 0 1 -3.439010340565611 0.6536862364091407
w 352 96 352 176 0
r 352 208 352 304 0 40.0
w 256 304 352 304 0
c 208 192 256 192 0 3.0E-6 1.5823558905147017
R 208 192 160 192 0 1 40.0 5.0 0.0
g 256 304 256 336 0
R 256 96 160 96 0 0 40.0 5.0 0.0
O 352 208 416 208 0
o 2 64 0 2 5.0 0.0015625
o 11 64 0 2 5.0 9.765625E-5


circuit.zip > mosfetamp.txt

$ 1 5.0E-6 42.05934401203833 60 5.0 53
r 208 176 208 272 0 4000.0
R 160 160 112 160 0 1 40.0 0.05 0.0 0.0 0.5
R 208 32 160 32 0 0 40.0 10.0 0.0 0.0 0.5
r 208 32 208 144 0 4000.0
c 208 144 320 144 0 1.0E-6 1.938598649739942
r 320 144 320 272 0 50000.0
g 320 272 320 304 0
O 320 144 384 144 0
w 208 176 256 176 0
c 256 176 256 272 0 9.999999999999999E-5 8.054803335508433
w 208 272 256 272 0
f 160 160 208 160 0 1.5
R 208 272 208 304 0 0 40.0 -10.0 0.0 0.0 0.5
o 1 128 0 34 0.078125 4.8828125E-5 0 -1
o 7 128 0 34 2.5 3.0517578125E-6 1 -1


circuit.zip > filt-lopass-l.txt

$ 1 5.0E-6 6.499443210467817 50 5.0 50
r 400 160 400 288 0 35.0
O 400 160 512 160 0
g 400 288 400 320 0
l 240 160 400 160 0 0.06545 0
170 240 160 208 160 3 20.0 1000.0 5.0 0.1
o 4 32 0 34 5.0 9.765625E-5 0 -1
o 1 32 0 34 5.0 9.765625E-5 1 -1
h 5 0 5


circuit.zip > tlmis1.txt

$ 0 5.0E-12 23.25989509352673 50 5.0 50
171 128 192 304 192 0 1.0E-8 75.0 64 0.0
r 128 192 80 192 0 75.0
w 80 256 128 256 0
w 512 192 544 192 0
w 512 256 544 256 0
r 544 192 544 256 0 500.0
v 80 256 80 192 0 1 1.87E8 5.0 0.0 0.0 0.03
g 304 256 304 272 0
g 336 256 336 272 0
g 512 256 512 272 0
171 336 192 512 192 0 1.0E-8 500.0 64 0.0
w 304 192 336 192 0
o 1 64 0 34 4.0 0.025 0 -1
o 5 64 0 34 5.0 0.00625 1 -1


circuit.zip > triangle.txt

$ 1 4.9999999999999996E-6 10.20027730826997 60 6.0 50
a 160 224 272 224 0 15.0 -15.0 1000000.0
w 160 240 160 304 0
w 160 304 272 304 0
r 272 224 272 304 0 10000.0
a 384 240 496 240 0 15.0 -15.0 1000000.0
r 272 304 352 304 0 4000.0
w 352 304 496 304 0
w 496 304 496 240 0
w 496 240 496 176 0
c 384 176 496 176 0 1.0E-6 4.7736574744107685
w 384 176 384 224 0
r 272 224 384 224 0 10000.0
g 384 256 384 272 0
O 496 240 560 240 0
w 160 208 128 208 0
g 128 208 128 240 0
o 13 64 0 42 10.0 9.765625E-5 0 -1


circuit.zip > thevenin.txt

$ 17 5.0E-6 10.8 50 5.0
r 112 176 208 128 0 100.0
r 208 128 224 224 0 100.0
r 224 224 320 176 0 200.0
r 208 128 288 144 0 100.0
r 304 80 288 144 0 100.0
v 288 144 384 128 0 0 40.0 5.0 0.0
v 320 176 320 256 0 0 40.0 5.0 0.0
v 112 176 128 240 0 0 40.0 5.0 0.0
v 304 80 224 64 0 0 40.0 5.0 0.0
v 224 224 224 288 0 0 40.0 5.0 0.0
r 224 288 304 304 0 200.0
r 128 240 64 288 0 400.0
r 384 128 448 192 0 100.0
r 320 256 384 272 0 100.0
r 224 64 112 80 0 1000.0
v 112 80 208 128 0 0 40.0 5.0 0.0
v 64 288 224 288 0 0 40.0 2.0 0.0
v 304 304 384 272 0 0 40.0 5.0 0.0
r 448 192 384 272 0 100.0
r 320 176 384 128 0 100.0
r 112 80 112 176 0 100.0
w 64 288 64 16 0
w 448 16 448 192 0
r 272 384 128 384 0 117.784267
w 128 384 128 336 0
w 384 336 384 384 0
v 272 384 384 384 0 0 40.0 2.80758 0.0
v 64 16 448 16 0 1 40.0 5.0 0.0
v 128 336 384 336 0 1 40.0 5.0 0.0
g 448 192 448 256 0
g 384 384 384 400 0
o 27 64 0 3 5.0 0.1
o 28 64 0 3 5.0 0.1


circuit.zip > moscurrentramp.txt

$ 1 5.0E-6 15.50424758475255 55 10.0 50
r 320 304 320 352 0 10.0
g 320 352 320 384 0
R 256 288 208 288 0 0 40.0 2.5 0.0 0.0 0.5
w 320 272 320 224 0
w 320 224 416 224 0
w 320 128 416 128 0
R 320 128 320 80 0 0 40.0 10.0 0.0 0.0 0.5
c 320 128 320 224 0 4.9999999999999996E-5 0
r 416 128 416 224 0 10000.0
w 320 128 272 128 0
w 320 224 272 224 0
s 272 128 272 224 0 1 true
f 256 288 320 288 0 1.5
o 8 128 0 34 10.0 7.8125E-4 0 -1


circuit.zip > scr.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
r 384 160 384 96 0 100.0
R 384 96 384 80 0 0 40.0 5.0 0.0 0.0 0.5
s 384 288 384 368 0 1 false
s 352 256 256 256 0 1 false
r 256 176 256 256 0 100.0
R 256 176 256 128 0 0 40.0 5.0 0.0 0.0 0.5
g 384 368 384 384 0
177 384 160 368 288 0 0.0 0.0


circuit.zip > deltasigma.txt

$ 3 5.0E-6 12.185319768402522 50 5.0 50
a 144 248 224 248 0 15.0 -15.0
w 144 232 144 200 0
c 144 200 224 200 0 1.4999999999999999E-5 14.45469914811517
w 224 200 224 248 0
w 144 232 128 232 0
160 112 104 112 168 0
w 128 168 128 232 0
g 96 168 96 184 0
r 128 232 64 232 0 1600.0
i 112 56 112 104 0 0.01
82 112 56 64 56 0 0 40.0 20.0 0.0 0.0 0.5
a 224 264 312 264 0 5.0 0.0
g 224 280 224 296 0
155 312 264 376 264 1 0.0
w 312 280 312 360 0
w 376 312 376 360 0
w 376 360 312 360 0
82 312 360 288 360 1 2 600.0 2.5 2.5 0.0 0.5
w 128 136 376 136 0
w 376 136 376 296 0
164 432 304 480 304 1 4 0.0 0.0 0.0 0.0
82 432 400 376 400 0 2 20.0 2.5 2.5 -0.17453292519943295 0.9
82 144 264 112 264 0 0 40.0 15.0 0.0 0.0 0.5
w 360 296 376 296 0
168 480 304 512 304 1 4
M 528 304 560 304 0 2.5
M 528 320 576 320 0 2.5
M 528 336 592 336 0 2.5
M 528 352 608 352 0 2.5
w 480 368 480 400 0
w 432 352 432 400 0
82 480 400 480 432 0 2 20.0 2.5 2.5 -3.141592653589793 0.5
82 64 232 40 232 0 4 1.0 7.5 7.5 0.0 0.5
153 376 304 432 304 1 2 0.0
o 32 64 0 34 10.0 0.00625 0 -1
o 25 64 0 34 7.62939453125E-5 9.765625E-5 1 -1
o 26 64 0 34 5.0 9.765625E-5 1 -1
o 27 64 0 34 5.0 9.765625E-5 1 -1
o 28 64 0 34 5.0 9.765625E-5 1 -1


circuit.zip > sine.txt

$ 1 5.0E-6 10.812258501325767 53 15.0 50
a 80 128 192 128 0 15.0 -15.0
w 80 112 32 112 0
w 80 144 80 208 0
a 304 144 416 144 0 15.0 -15.0
w 416 208 416 144 0
w 416 144 416 80 0
c 304 80 416 80 0 2.0E-6 -9.423018815839887
w 304 80 304 128 0
r 192 128 304 128 0 1000.0
g 304 160 304 176 0
O 416 144 480 144 0
w 80 112 80 48 0
c 80 48 192 48 0 2.0E-6 10.648649139047
w 192 48 192 128 0
r 80 208 192 208 0 1000.0
w 192 208 416 208 0
c 80 208 80 272 0 2.0E-6 -1.201945379750099
g 80 272 80 304 0
r 32 112 32 192 0 996.0
g 32 192 32 224 0
O 192 48 256 48 0
o 20 64 0 42 20.0 9.765625E-5 0 -1
o 10 64 0 34 20.0 9.765625E-5 0 -1


circuit.zip > mr-sine3.txt

$ 1 5.0E-8 9.78399845368213 72 1.0 50
g 320 304 320 320 0
m 320 192 320 304 0 100.0 5000.0 3.865479277469485E-9 1.0E-8 1.0E-10
R 320 192 320 160 0 1 8000.0 2.0 0.0 0.0 0.5
o 1 64 0 35 2.5 0.025 0 -1
o 1 64 2 35 5120.0 2.44140625E-5 1 -1
o 1 64 0 99 2.5 0.025 2 -1


circuit.zip > rectify.txt

$ 1 5.0E-6 13.2 55 5.0
v 112 320 112 96 0 1 40.0 5.0 0.0
r 416 96 416 320 0 640.0
d 112 96 416 96 0
w 112 320 416 320 0
o 0 64 0 3 5.0 0.0125
o 1 64 0 3 5.0 0.0125


circuit.zip > opamp-regulator.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
r 192 160 192 208 0 10000.0
g 192 272 192 288 0
a 240 224 336 224 1 15.0 -15.0 1000000.0
w 240 208 192 208 0
w 192 160 320 160 0
w 336 192 336 224 0
w 352 160 416 160 1
w 240 240 240 272 0
w 240 272 416 272 0
r 416 160 416 272 0 470.0
r 416 272 416 336 0 470.0
g 416 336 416 352 0
w 416 160 544 160 2
t 336 192 336 160 1 1 0.47225771069311584 0.6621194688210963 100.0
v 560 240 560 176 0 5 60.0 6.0 2.5 0.0 0.5
w 560 240 560 272 1
g 560 272 560 288 0
z 192 272 192 208 1 0.805904783 6.14
x 502 319 631 323 0 18 Simulated load
x 519 332 614 335 0 12 Variable Current
x 436 142 518 145 0 12 Stable Voltage
R 80 160 80 256 0 3 120.0 2.0 16.0 0.0 0.5
x 40 294 142 298 0 18 Variable V/I
174 544 160 576 176 0 1000.0 0.5 Load Current
r 80 160 192 160 0 100.0
o 21 64 0 35 20.0 0.05 0 -1 input
o 12 64 0 35 20.0 0.025 1 -1 regulated
o 14 64 0 35 10.0 0.025 2 -1 load


circuit.zip > voltdivide.txt

$ 1 5.0E-6 10 63 10.0 62
v 112 368 112 48 0 0 40.0 10.0 0.0
w 112 48 240 48 0
r 240 48 240 208 0 10000
r 240 208 240 368 0 10000
w 112 368 240 368 0
O 240 208 304 208 1
w 240 48 432 48 0
w 240 368 432 368 0
r 432 48 432 128 0 10000
r 432 128 432 208 0 10000
r 432 208 432 288 0 10000
r 432 288 432 368 0 10000
O 432 128 496 128 1
O 432 208 496 208 1
O 432 288 496 288 1


circuit.zip > 4way.txt

$ 1 5.0E-6 3 44 120.0 15
v 32 320 32 80 0 1 60.0 120.0 0.0
r 480 80 480 320 0 150.0
w 32 80 80 80 0
S 336 176 240 176 0 false false 2
S 336 240 240 240 0 false false 2
w 432 80 480 80 0
w 32 320 80 320 0
w 80 320 480 320 0
w 208 256 240 256 0
w 208 160 240 160 0
w 240 192 240 224 0
S 80 208 176 208 0 false false 0
w 80 80 80 208 0
w 176 224 240 224 0
w 208 160 208 192 0
w 176 192 208 192 0
w 208 192 208 256 0
S 432 208 336 208 0 false false 0
w 336 176 336 192 0
w 336 224 336 240 0
w 432 80 432 208 0


circuit.zip > coupled1.txt

$ 1 5.0E-6 12.682493960703473 55 5.0 50
l 192 240 304 240 0 1.0 0.0
l 304 240 416 240 0 1.0 0.0
c 192 240 192 368 0 1.0E-5 5.0
c 304 240 304 368 0 1.0E-5 -0.0
c 416 240 416 368 0 1.0E-5 5.0
r 192 368 304 368 0 1.0
r 304 368 416 368 0 1.0
g 304 368 304 384 0
l 192 32 304 32 0 1.0 0.0
l 304 32 416 32 0 1.0 0.0
c 192 32 192 160 0 1.0E-5 5.0
c 304 32 304 160 0 1.0E-5 -0.0
c 416 32 416 160 0 1.0E-5 -5.0
r 192 160 304 160 0 1.0
r 304 160 416 160 0 1.0
g 304 160 304 176 0
o 13 64 0 43 0.01953125 0.025 0 -1
o 5 64 0 43 0.009765625 0.0125 1 -1


circuit.zip > traffic.txt

$ 3 0.0012 3.84 50 5.0 50
163 296 336 320 336 1 10 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0
R 456 368 456 392 0 0 40.0 5.0 0.0
152 336 296 336 232 1 4 0.0
w 320 296 312 296 0
w 312 296 312 320 0
w 328 296 328 320 0
w 344 296 344 320 0
w 352 296 360 296 0
w 360 296 360 320 0
w 408 296 408 320 0
w 424 296 424 320 0
w 400 296 392 296 0
w 392 296 392 320 0
w 432 296 440 296 0
w 440 296 440 320 0
152 416 296 416 232 1 4 5.0
162 480 88 528 88 0 1.0 0.0 0.0
162 480 120 528 120 0 1.0 1.0 0.0
162 480 152 528 152 0 0.0 1.0 0.0
w 376 320 376 216 0
162 304 88 256 88 0 1.0 0.0 0.0
162 304 120 256 120 0 1.0 1.0 0.0
162 304 152 256 152 0 0.0 1.0 0.0
w 336 232 336 152 0
w 456 320 456 120 0
w 456 120 480 120 0
w 416 232 416 152 0
w 416 152 480 152 0
w 416 96 416 152 0
w 416 80 432 80 0
w 432 80 432 120 0
w 432 120 456 120 0
w 336 152 336 40 0
w 360 88 304 88 0
w 376 216 352 216 0
w 336 152 304 152 0
w 352 216 352 120 0
w 352 120 304 120 0
w 352 120 352 56 0
152 352 48 480 48 1 2 0.0
w 336 40 352 40 0
w 480 48 480 88 0
w 528 88 528 120 0
w 528 120 528 152 0
w 256 88 256 120 0
w 256 120 256 152 0
r 528 152 528 216 0 200.0
r 256 152 256 216 0 200.0
g 256 216 256 232 0
g 528 216 528 232 0
152 416 88 360 88 1 2 5.0
R 152 176 152 136 0 0 40.0 5.0 0.0
w 152 176 64 176 0
r 64 240 64 304 0 47000.0
r 64 176 64 240 0 10000.0
w 216 272 216 352 0
w 216 352 296 352 0
165 88 208 152 208 0 0.0
w 64 304 64 336 0
c 64 336 64 368 0 9.999999999999999E-6 2.4856719240739658
g 64 368 64 384 0
w 64 240 88 240 0
w 64 304 88 304 0
w 64 336 88 336 0


circuit.zip > ringing.txt

$ 1 5.0E-6 4.621633621589249 50 5.0 46
w 368 128 368 192 0
w 368 272 368 320 0
w 320 272 368 272 0
w 368 272 416 272 0
w 320 192 368 192 0
w 368 192 416 192 0
l 320 192 320 272 0 0.0020 0.07708318720316419
c 416 192 416 272 0 1.264E-5 -0.22352804367929519
r 256 128 368 128 0 100.0
O 368 128 464 128 0
g 368 320 368 336 0
R 256 128 224 128 0 2 100.0 5.0 0.0 0.0 0.5
o 9 16 0 34 2.5 4.8828125E-5 0 -1


circuit.zip > counter8.txt

$ 3 5.0E-6 23 50 5.0
156 88 272 104 272 1 0
156 152 272 168 272 1 0
w 152 272 144 272 0
w 144 272 144 304 0
w 144 304 152 304 0
w 136 272 136 288 0
w 136 288 152 288 0
156 216 272 232 272 1 0.0
156 280 272 296 272 1 0.0
156 344 272 352 272 1 0.0
156 408 272 424 272 1 0.0
156 472 272 488 272 1 0.0
w 200 272 200 288 0
w 200 288 216 288 0
w 264 272 264 288 0
w 264 288 280 288 0
w 328 272 328 288 0
w 328 288 344 288 0
w 392 272 392 288 0
w 392 288 408 288 0
w 456 272 456 288 0
w 456 288 472 288 0
w 216 272 208 272 0
w 208 272 208 304 0
w 208 304 216 304 0
w 280 272 272 272 0
w 272 272 272 304 0
w 272 304 280 304 0
w 344 272 336 272 0
w 336 272 336 304 0
w 336 304 344 304 0
w 408 272 400 272 0
w 400 272 400 304 0
w 400 304 408 304 0
w 472 272 464 272 0
w 464 272 464 304 0
w 464 304 472 304 0
w 144 304 144 336 0
w 208 304 208 336 0
w 144 336 208 336 0
w 208 336 272 336 0
w 272 304 272 336 0
w 272 336 336 336 0
w 336 336 400 336 0
w 400 336 464 336 0
w 464 336 464 304 0
w 400 304 400 336 0
w 336 304 336 336 0
R 88 288 32 288 1 2 1000.0 2.5 2.5
w 88 272 80 272 0
w 80 272 80 304 0
w 80 304 88 304 0
w 80 304 80 336 0
w 80 336 144 336 0
R 80 336 32 336 0 0 40.0 5.0 0.0
w 136 272 136 224 0
w 200 272 200 200 0
w 264 272 264 176 0
w 328 272 328 152 0
w 392 272 392 128 0
w 456 272 456 104 0
w 520 272 520 80 0
M 136 224 80 224 2
M 200 200 80 200 2
M 264 176 80 176 2
M 328 152 80 152 2
M 392 128 80 128 2
M 456 104 80 104 2
M 520 80 80 80 2
w 464 336 528 336 0
w 528 336 528 304 0
w 520 272 520 288 0
w 520 288 536 288 0
156 536 272 552 272 1 0.0
w 528 272 528 304 0
w 528 272 536 272 0
w 584 272 584 56 0
w 528 304 536 304 0
M 584 56 80 56 2
o 78 64 0 6 5.0 9.765625E-5 0
o 68 64 0 6 7.62939453125E-5 9.765625E-5 0
o 67 64 0 6 5.0 9.765625E-5 0
o 66 64 0 6 5.0 9.765625E-5 0
o 65 64 0 6 5.0 9.765625E-5 0
o 64 64 0 6 5.0 9.765625E-5 0
o 63 64 0 6 5.0 9.765625E-5 0
o 62 64 0 6 5.0 9.765625E-5 0


circuit.zip > mr-sine.txt

$ 1 5.0E-8 9.78399845368213 72 1.0 50
g 320 304 320 320 0
m 320 192 320 304 0 100.0 16000.0 0 1.0E-8 1.0E-10
R 320 192 320 160 0 1 4000.0 1.0 0.0 0.0 0.5
o 1 64 0 35 1.25 1.953125E-4 0 -1
o 1 64 2 35 20480.0 9.765625E-5 1 -1
o 1 64 0 99 2.5 1.953125E-4 2 -1


circuit.zip > phaseseq.txt

$ 1 2.0E-5 6.7 50 5.0
r 112 96 176 96 0 100.0
r 176 96 240 96 0 100.0
r 240 96 304 96 0 100.0
r 304 96 368 96 0 100.0
c 176 96 112 160 0 3.9999999999999996E-5 -0.10741100884462906
c 240 96 176 160 0 1.9999999999999998E-5 1.1133615569674231
c 304 96 240 160 0 9.999999999999999E-6 -0.7647587214948204
c 368 96 304 160 0 4.9999999999999996E-6 -2.06464071412291
r 112 160 176 160 0 100.0
r 176 160 240 160 0 100.0
r 240 160 304 160 0 100.0
r 304 160 368 160 0 100.0
c 176 160 112 224 0 3.9999999999999996E-5 -2.8808489197362044
c 240 160 176 224 0 1.9999999999999998E-5 -1.9733158385444027
c 304 160 240 224 0 1.0E-5 -2.770585096178578
c 368 160 304 224 0 4.9999999999999996E-6 -3.3745823741490737
c 176 224 112 288 0 3.9999999999999996E-5 0.10741100884465973
c 240 224 176 288 0 1.9999999999999998E-5 -1.1133615569673985
c 304 224 240 288 0 1.0E-5 0.7647587214948486
c 368 224 304 288 0 4.9999999999999996E-6 2.064640714122932
r 112 224 176 224 0 100.0
r 176 224 240 224 0 100.0
r 240 224 304 224 0 100.0
r 304 224 368 224 0 100.0
r 368 288 304 288 0 100.0
r 304 288 240 288 0 100.0
r 240 288 176 288 0 100.0
r 176 288 112 288 0 100.0
c 176 288 112 352 0 3.9999999999999996E-5 2.880848919736184
c 240 288 176 352 0 1.9999999999999998E-5 1.9733158385443441
c 304 288 240 352 0 1.0E-5 2.770585096178546
c 368 288 304 352 0 4.9999999999999996E-6 3.3745823741490497
w 304 352 384 352 0
w 384 352 384 80 0
w 384 80 304 80 0
w 304 80 304 96 0
w 240 352 240 368 0
w 240 368 400 368 0
w 400 368 400 64 0
w 400 64 240 64 0
w 240 64 240 96 0
w 176 352 176 384 0
w 176 384 416 384 0
w 416 384 416 48 0
w 416 48 176 48 0
w 176 48 176 96 0
w 112 352 112 400 0
w 112 400 432 400 0
w 432 400 432 32 0
w 432 32 112 32 0
w 112 32 112 96 0
w 368 96 448 96 0
w 368 160 448 160 0
w 368 224 448 224 0
w 368 288 448 288 0
O 448 96 496 96 0
O 448 160 496 160 0
O 448 224 496 224 0
O 448 288 496 288 0
w 112 96 112 128 0
w 112 128 112 160 0
w 112 224 112 256 0
w 112 256 112 288 0
v 48 192 48 128 0 1 40.0 5.0 0.0
v 48 256 48 192 0 1 40.0 5.0 0.0
w 48 128 112 128 0
w 48 256 112 256 0
o 55 32 0 6 5.0 9.765625E-5 0
o 56 32 0 6 5.0 9.765625E-5 0
o 57 32 0 6 5.0 9.765625E-5 0
o 58 32 0 6 5.0 9.765625E-5 0


circuit.zip > divideby2.txt

$ 1 5.0E-6 10 50 5.0
155 272 96 320 96 0 0.0
R 272 128 208 128 1 2 100.0 2.5 2.5
w 368 160 368 64 0
w 368 64 272 64 0
w 272 64 272 96 0
M 368 96 448 96 0
o 1 64 0 14 5.0 9.765625E-5 0
o 5 64 0 14 5.0 9.765625E-5 0


circuit.zip > relaxosc.txt

$ 1 5.0E-6 10.20027730826997 61 10.0 50
a 288 224 416 224 0 15.0 -15.0 1000000.0
w 288 208 288 160 0
r 288 160 416 160 0 10000.0
w 416 160 416 224 0
w 416 224 416 288 0
r 416 288 288 288 0 100000.0
w 288 240 288 288 0
r 288 288 192 288 0 100000.0
g 192 288 192 320 0
c 288 160 192 160 0 9.999999999999999E-7 6.154634481752644
g 192 160 192 192 0
O 416 224 480 224 0
o 9 64 0 35 10.0 0.025 0 -1
o 11 64 0 42 20.0 9.765625E-5 1 -1


circuit.zip > flashadc.txt

$ 3 5.0E-6 6.75 58 7.0
a 104 64 176 64 2 5.0 0.0
a 104 112 176 112 2 5.0 0.0
a 104 160 176 160 2 5.0 0.0
a 104 208 176 208 2 5.0 0.0
a 104 256 176 256 2 5.0 0.0
a 104 304 176 304 2 5.0 0.0
a 104 352 176 352 2 5.0 0.0
r 72 8 72 56 0 500.0
r 72 56 72 104 0 1000.0
r 72 104 72 152 0 1000.0
r 72 152 72 200 0 1000.0
r 72 200 72 248 0 1000.0
r 72 248 72 296 0 1000.0
r 72 296 72 344 0 1000.0
r 72 344 72 392 0 500.0
R 72 8 32 8 0 0 40.0 7.0 0.0
w 72 56 104 56 0
w 72 104 104 104 0
w 72 152 104 152 0
w 72 200 104 200 0
w 72 248 104 248 0
w 72 296 104 296 0
w 72 344 104 344 0
w 104 72 104 120 0
w 104 120 104 168 0
w 104 168 104 216 0
w 104 216 104 264 0
w 104 264 104 312 0
w 104 312 104 360 0
w 104 72 104 24 0
R 104 24 184 24 0 4 50.0 3.5 3.5
g 72 392 72 400 0
154 288 368 352 368 1 7 5.0
w 176 352 176 392 0
w 176 392 288 392 0
w 176 304 184 304 0
w 184 304 184 384 0
w 184 384 288 384 0
w 176 256 192 256 0
w 192 256 192 376 0
w 192 376 288 376 0
w 176 208 200 208 0
w 200 208 200 368 0
w 200 368 288 368 0
w 176 160 208 160 0
w 208 160 208 360 0
w 208 360 288 360 0
w 176 112 216 112 0
w 216 112 216 352 0
w 216 352 288 352 0
w 176 64 224 64 0
w 224 64 224 344 0
w 224 344 288 344 0
154 280 296 352 296 1 3 5.0
w 184 304 280 304 0
w 280 296 248 296 0
w 280 288 256 288 0
w 248 296 248 208 0
w 248 208 200 208 0
w 256 288 256 112 0
w 256 112 216 112 0
w 248 208 352 208 0
w 352 368 352 328 0
w 352 208 352 264 0
M 352 328 472 328 0
M 352 296 472 296 0
M 352 264 472 264 0
o 30 32 0 2 10.0 9.765625E-5 0
o 66 32 0 22 6.0 2.44140625E-5 1
o 65 32 0 22 6.0 9.765625E-5 1
o 64 32 0 22 6.0 9.765625E-5 1


circuit.zip > howland.txt

$ 1 5.0E-6 10.391409633455755 58 5.0 50
a 256 160 368 160 0 15.0 -15.0
w 368 160 368 96 0
w 368 160 368 224 0
r 256 224 368 224 0 3000.0
r 256 96 368 96 0 5000.0
r 256 96 144 96 0 5000.0
r 144 224 256 224 0 3000.0
w 256 176 256 224 0
R 144 96 144 48 0 0 40.0 -5.0 0.0 0.0 0.5
g 144 224 144 256 0
w 256 96 256 144 0
w 256 224 256 272 0
r 256 272 256 352 0 2000.0
s 304 272 304 352 0 1 false
w 256 352 304 352 0
g 256 352 256 384 0
w 256 272 304 272 0
x 187 67 217 74 0 24 R1
x 300 67 330 73 0 24 R2
x 185 259 215 265 0 24 R3
x 298 259 328 265 0 24 R4
x 184 320 234 326 0 24 load
o 11 64 0 33 2.5 0.003125 0 -1


circuit.zip > logconvert.txt

$ 1 5.0E-6 12.185319768402522 54 5.0 50
a 208 240 304 240 0 15.0 -15.0
d 304 112 208 112 0
w 208 144 208 112 0
c 208 80 304 80 0 1.0E-6 0.6555203584434989
w 304 80 304 112 0
w 208 80 208 112 0
w 208 144 208 224 0
r 208 224 128 224 0 1000.0
R 128 224 96 224 0 1 40.0 3.0 3.0 0.0 0.5
g 208 256 208 272 0
t 320 272 320 240 0 1 0.0 0.6332109005736126
w 336 240 352 240 0
w 352 240 352 272 0
w 352 272 320 272 0
w 352 240 384 240 0
i 384 176 384 240 0 0.01
R 384 176 384 144 0 0 40.0 10.0 0.0 0.0 0.5
a 384 256 480 256 1 15.0 -15.0
r 384 320 480 320 0 15000.0
r 384 320 384 384 0 1000.0
w 384 272 384 320 0
w 480 256 480 320 0
g 384 384 384 400 0
O 480 256 528 256 0
p 128 224 128 288 0
g 128 288 128 304 0
t 256 176 256 144 1 1 -6.5551380330546585E-6 0.6555138033054658
w 208 144 240 144 0
w 272 144 304 144 0
w 304 112 304 144 0
w 304 144 304 240 0
g 256 176 256 192 0
o 8 64 0 34 10.0 0.05 0 -1 in
o 23 64 0 34 2.5 2.44140625E-5 1 -1 out
o 24 64 0 226 10.0 1.6 2 23 out vs in


circuit.zip > zenerref.txt

$ 1 5.0E-6 10.20027730826997 54 5.0 50
R 272 160 224 160 0 1 40.0 1.0 6.7 0.0 0.5
z 336 288 336 160 1 0.805904783 5.6
g 336 288 336 304 0
w 336 160 416 160 0
r 416 160 416 288 0 10000.0
g 416 288 416 304 0
r 272 160 336 160 0 500.0
o 0 64 0 34 10.0 0.003125 0 -1 in
o 4 64 0 34 10.0 3.90625E-4 1 -1 out
o 1 64 0 35 10.0 0.00625 2 -1 zener


circuit.zip > pot.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
v 208 320 208 160 0 0 40.0 5.0 0.0 0.0 0.5
v 432 320 432 160 0 0 40.0 5.0 0.0 0.0 0.5
w 320 224 320 160 0
w 320 160 208 160 0
w 320 160 432 160 0
174 208 320 432 224 0 1000.0 0.5 Resistance


circuit.zip > tlmatch1.txt

$ 1 1.0E-11 25.237822143832553 52 4.0 50
171 128 128 256 128 0 2.0E-8 75.0 64 0.0
171 400 128 528 128 0 2.0E-8 300.0 64 0.0
r 128 128 80 128 0 75.0
w 80 192 128 192 0
w 528 128 560 128 0
w 528 192 560 192 0
r 560 128 560 192 0 300.0
v 80 192 80 128 0 1 9.0E7 5.0 0.0 0.0 0.03
g 256 192 256 208 0
g 400 192 400 208 0
g 528 192 528 208 0
l 256 128 336 128 0 2.5E-7 -0.00932931614162717
c 336 128 336 192 0 1.06E-11 -4.843602086224591
w 336 192 400 192 0
w 336 128 400 128 0
v 80 256 80 320 0 1 9.0E7 5.0 0.0 0.0 0.5
r 80 256 128 256 0 75.0
w 80 320 128 320 0
171 128 256 256 256 0 2.0E-8 75.0 64 0.0
171 400 256 528 256 0 2.0E-8 300.0 64 0.0
w 256 256 400 256 0
w 256 320 400 320 0
w 528 256 560 256 0
w 528 320 560 320 0
g 256 320 256 336 0
g 528 320 528 336 0
g 128 192 128 208 0
g 128 320 128 336 0
r 560 256 560 320 0 300.0
o 6 64 1 51 0.15625 1.220703125E-5 0 -1 matched
o 28 64 1 51 0.15625 2.44140625E-5 1 -1 mismatched


circuit.zip > pll2.txt

$ 1 5.0E-6 15.5 60 5.0
158 416 208 448 208 0
c 512 208 512 240 0 9.999999999999999E-7 0
r 512 272 576 272 0 3000.0
r 512 304 576 304 0 100000.0
w 576 272 576 304 0
g 576 304 576 336 0
R 128 160 64 160 0 2 120.0 2.5 2.5
w 128 192 128 304 0
w 128 304 416 304 0
w 416 176 416 208 0
O 128 304 80 304 0
a 336 112 416 112 1 15.0 -15.0
w 304 96 336 96 0
w 336 128 336 176 0
w 336 176 416 176 0
w 416 176 416 112 0
161 128 160 176 160 0
r 224 160 304 160 0 500.0
w 304 96 304 160 0
c 304 160 304 208 0 9.0E-5 0
r 304 208 304 256 0 1000.0
g 304 256 304 272 0
o 6 64 0 14 5.0 9.765625E-5 0
o 10 64 0 14 5.0 9.765625E-5 0
o 19 64 0 3 0.15625 0.05 1


circuit.zip > allpass1.txt

$ 1 5.0E-6 10.634267539816555 50 5.0 50
a 320 224 416 224 0 15.0 -15.0
r 320 208 240 208 0 1000.0
r 320 240 240 240 0 1000.0
w 320 208 320 144 0
r 320 144 416 144 0 1000.0
w 416 144 416 224 0
c 320 240 320 320 0 1.0E-6 -3.138168736927825
g 320 320 320 336 0
w 240 208 240 240 0
170 240 208 192 208 3 10.0 2000.0 5.0 0.1
O 416 224 480 224 0
o 9 8 0 34 6.0 0.00625 0 -1 input
o 10 8 0 34 6.0 9.765625E-55 0 -1 output


circuit.zip > jfetfollower-nooff.txt

$ 1 5.0E-6 10 50 5.0
r 256 128 256 224 0 1100.0
j 208 112 256 112 0
R 208 112 160 112 0 1 40.0 2.0 0.0
j 208 240 256 240 0
r 256 256 256 320 0 1100.0
w 208 240 208 320 0
w 208 320 256 320 0
R 256 320 256 384 0 0 40.0 -10.0 0.0
O 256 224 352 224 0
R 256 96 256 32 0 0 40.0 10.0 0.0
o 2 64 0 2 2.5 9.765625E-5
o 8 64 0 2 2.5 1.220703125E-5


circuit.zip > itov.txt

$ 1 5.0E-6 10 59 5.0
r 272 112 384 112 0 1001.0
w 272 112 272 160 0
g 272 192 272 288 0
S 192 240 192 160 0 true false 0
S 192 80 192 160 0 true false 0
w 112 80 112 160 0
w 112 160 112 240 0
r 112 160 176 160 0 1000.0
i 192 80 112 80 0 0.0010
i 192 240 112 240 0 0.0020
a 272 176 384 176 0
w 384 112 384 176 0
O 384 176 448 176 1
R 112 240 112 280 0 0 40 -5 0 0 .5
w 272 160 208 160 1
o 14 64 0 1 7.62939453125E-5 0.003125
o 12 64 0 2 5.0 9.765625E-5


circuit.zip > res-series.txt

$ 1 5.0E-6 15 48 5.0
v 80 112 80 32 0 1 35.0 5.0 0.0
v 80 224 80 144 0 1 41.09 5.0 0.0
v 80 336 80 256 0 1 45.0 5.0 0.0
r 80 32 432 32 0 10.0
c 432 32 432 112 0 1.5E-5 0
l 80 112 432 112 0 1.0 0
r 80 144 432 144 0 10.0
c 432 144 432 224 0 1.5E-5 0
l 80 224 432 224 0 1.0 0
r 80 256 432 256 0 10.0
c 432 256 432 336 0 1.5E-5 0
l 80 336 432 336 0 1.0 0
h 1 5 4
o 4 64 0 3 20.0 0.1
o 7 64 0 3 160.0 0.8
o 10 64 0 3 40.0 0.2


circuit.zip > 3-cgand.txt

$ 1 5.0E-6 11.251013186076355 50 5.0 50
f 352 416 464 416 6 3.25
f 352 368 464 368 6 3.25
w 464 384 464 400 0
f 304 304 352 304 7 -1.75
f 224 304 272 304 7 -1.75
w 352 320 352 336 0
w 272 320 272 336 0
w 272 336 352 336 0
w 352 336 464 336 0
w 464 336 464 352 0
w 272 272 272 288 0
w 272 272 352 272 0
w 352 272 352 288 0
f 304 240 352 240 6 -1.75
f 304 192 352 192 6 -1.75
w 352 256 352 272 0
w 352 208 352 224 0
R 352 176 352 144 0 0 40.0 2.5 0.0 0.0 0.5
w 304 192 224 192 0
w 224 192 224 304 0
w 304 240 304 304 0
w 304 240 192 240 0
w 192 240 192 368 0
w 192 368 352 368 0
w 160 192 224 192 0
w 160 192 160 416 0
w 160 416 352 416 0
g 464 432 464 448 0
f 368 112 416 112 7 3.25
f 400 64 464 64 7 3.25
w 464 16 464 48 0
w 416 16 416 96 0
w 416 16 464 16 0
w 464 240 464 336 0
w 400 64 160 64 0
w 160 64 160 192 0
w 192 240 192 112 0
w 192 112 368 112 0
R 416 16 368 16 0 0 40.0 5.0 0.0 0.0 0.5
w 416 128 416 144 0
w 416 144 464 144 0
w 464 144 464 80 0
w 464 144 464 240 0
M 464 240 528 240 1 2.5
L 160 192 96 192 1 2 false 5.0 0.0
L 192 240 96 240 1 1 false 5.0 0.0


circuit.zip > inductkick-snub.txt

$ 1 5.0E-6 10 50 5.0 42
v 176 304 176 128 0 0 40.0 5.0 0.0
w 176 304 224 304 0
w 336 304 288 304 0
s 224 304 288 304 0 false false
w 288 304 288 336 0
w 224 304 224 336 0
c 224 336 288 336 0 5.0E-10 -0.0
l 176 128 336 128 0 1.0 0
r 336 128 336 304 0 100.0
w 176 128 176 80 0
w 336 128 336 80 0
r 256 80 176 80 0 100.0
c 256 80 336 80 0 9.999999999999999E-6 0.04169291603818248
o 7 64 0 3 5.0 0.05


circuit.zip > nandff.txt

$ 1 5.0E-6 1.5 50 5.0 50
151 256 160 368 160 0 2 0.0
151 256 288 368 288 0 2 5.0
w 368 160 368 192 0
w 368 192 256 256 0
w 368 288 368 256 0
w 368 256 256 192 0
w 256 192 256 176 0
w 256 256 256 272 0
L 256 304 176 304 0 false true 5.0 0.0
L 256 144 176 144 0 false true 5.0 0.0
M 368 160 448 160 0 2.5
M 368 288 448 288 0 2.5
x 159 120 175 120 0 24 set
x 438 138 454 138 0 24 Q
x 147 281 163 281 0 24 reset
x 438 266 454 266 2 24 Q


circuit.zip > cmostransgate.txt

$ 1 5.0E-6 16.13108636308289 50 5.0 50
w 320 192 400 192 0
r 400 192 400 272 0 100.0
g 400 272 400 304 0
w 208 240 208 144 0
w 288 192 144 192 0
L 208 240 96 240 0 false false
R 144 192 96 192 0 1 40.0 2.5 2.5
f 304 144 304 192 1
f 304 240 304 192 0
I 208 144 304 144 0
w 208 240 304 240 0


circuit.zip > voltinvert.txt

$ 1 5.0E-6 3.5 62 5.0
159 176 112 272 112 0
159 272 112 368 112 0
c 272 112 272 208 0 1.0E-5 0
159 176 208 272 208 0
159 272 208 368 208 0
g 368 112 368 144 0
c 368 208 368 304 0 1.0E-5 0
g 368 304 368 320 0
g 176 208 176 240 0
R 176 112 128 112 0 0 40.0 5.0 0.0
w 224 128 224 224 0
w 320 128 320 224 0
w 224 224 224 288 0
w 320 224 320 288 0
I 224 288 320 288 0
R 224 288 128 288 1 2 400.0 2.5 2.5
w 368 208 432 208 0
r 432 208 432 304 0 30000.0
g 432 304 432 320 0
O 432 208 496 208 1


circuit.zip > filt-vcvs-hipass.txt

$ 1 5.0E-6 10.812258501325767 65 5.0 50
r 464 192 464 256 0 5860.0
r 464 256 464 320 0 10000.0
g 464 320 464 336 0
w 224 128 224 176 0
g 304 256 304 272 0
w 304 176 352 176 0
a 352 192 464 192 1 15.0 -15.0
w 352 208 352 256 0
w 352 256 464 256 0
w 464 192 480 192 0
w 480 192 480 128 0
O 480 192 544 192 0
p 144 176 144 256 0
g 144 256 144 272 0
c 144 176 224 176 0 5.3E-8 -0.956532193261995
c 224 176 304 176 0 5.3E-8 2.2055312375929486
r 304 176 304 256 0 10000.0
r 224 128 480 128 0 10000.0
170 144 176 112 176 3 20.0 800.0 5.0 0.2
o 12 32 0 34 5.0 9.765625E-5 0 -1
o 11 32 0 34 2.5 2.44140625E-5 1 -1


circuit.zip > lissa.txt

$ 1 5.0E-6 52.86996988945491 50 5.0 50
118 160 208 160 80 0 1 100.0 5.0 0.0 0.0 0.5
118 160 400 160 256 0 1 104.0 5.0 0.0 0.0 0.5
w 160 80 208 80 0
w 160 208 208 208 0
w 160 256 208 256 0
w 160 400 208 400 0
p 208 80 208 208 0
p 208 256 208 400 0
118 288 208 288 80 0 1 40.0 5.0 0.0 0.0 0.5
118 288 400 288 256 0 1 101.0 5.0 0.0 0.0 0.5
w 288 80 336 80 0
w 288 208 336 208 0
w 288 256 336 256 0
w 288 400 336 400 0
w 416 256 464 256 0
w 416 80 464 80 0
w 416 208 464 208 0
w 416 400 464 400 0
118 416 208 416 80 0 1 91.0 5.0 0.0 0.0 0.5
118 416 400 416 256 0 1 30.0 5.0 0.0 0.0 0.5
p 336 80 336 208 0
p 336 256 336 400 0
p 464 80 464 208 0
p 464 256 464 400 0
o 6 64 0 226 5.0 6.4 0 7
o 20 64 0 226 5.0 6.4 1 21
o 22 64 0 226 5.0 6.4 2 23


circuit.zip > invertamp.txt

$ 1 5.0E-6 10 53 5.0
f 272 176 336 176 1
f 272 272 336 272 0
w 336 192 336 224 0
w 336 224 336 256 0
w 272 176 272 224 0
w 272 224 272 272 0
R 336 160 336 112 0 0 40.0 5.0 0.0
g 336 288 336 320 0
c 272 224 208 224 0 1.0E-7 2
R 208 224 160 224 0 1 250.0 0.01 0.0
w 336 224 416 224 0
w 416 224 416 64 0
r 416 64 272 64 0 1000000.0
w 272 64 272 176 0
O 416 224 496 224 0
o 9 32 0 2 0.01953125 1.220703125E-5
o 14 32 0 2 5.0 9.765625E-5


circuit.zip > inv-osc.txt

$ 1 5.0E-6 73 50 5.0 50
I 272 208 352 208 0 0.5
c 352 208 352 128 0 3.9999999999999996E-5 0.3979592824367497
r 192 128 192 208 0 4000.0
I 192 208 272 208 0 2.0E-4
p 192 208 192 272 0
g 192 272 192 288 0
w 272 128 352 128 0
r 272 128 272 208 0 400.0
w 192 128 272 128 0
O 352 208 432 208 0
o 9 128 0 10 10.0 9.765625E-5 0


circuit.zip > 555schmitt.txt

$ 1 5.0E-6 10.391409633455755 56 5.0 50
165 304 160 416 160 0 0.0
w 256 128 368 128 0
R 256 128 144 128 0 0 40.0 5.0 0.0
O 432 224 496 224 0
w 256 288 256 256 0
w 256 256 304 256 0
w 256 288 304 288 0
v 256 256 192 256 0 1 400.0 1 0.0
R 192 256 144 256 0 1 40.0 2.5 2.5
p 256 288 256 336 0
g 256 336 256 352 0
o 9 64 0 6 6.1 9.765625E-5 0
o 3 64 0 6 5.0 9.765625E-5 0


circuit.zip > cciamp.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
179 208 176 304 176 0 1.0
i 144 304 208 304 0 0.01
g 144 304 144 320 0
w 208 240 208 304 0
r 208 176 112 176 0 10.0
g 112 176 112 192 0
g 400 256 400 272 0
w 208 240 144 240 0
174 144 240 80 272 0 100.0 0.7277 Multiplier
174 352 208 448 256 0 100.0 0.32180000000000003 Z Resistance
g 112 272 112 288 0
w 304 208 352 208 1


circuit.zip > diodelimit.txt

$ 1 5.0E-6 10 50 5.0
v 176 288 176 144 0 1 40.0 5.0 0.0
r 176 144 272 144 0 110.0
w 272 144 272 192 0
w 272 192 304 192 0
w 272 192 240 192 0
w 176 288 240 288 0
w 240 288 304 288 0
d 240 192 240 288 0
d 304 288 304 192 0
O 272 144 368 144 0
o 0 32 0 3 5.0 0.05
o 9 64 0 2 1.25 2.44140625E-5


circuit.zip > pushpullxover.txt

$ 1 5.0E-6 10.812258501325767 43 10.0 42
t 256 192 320 192 0 1 -12.21942316756332 -0.7012139808257767
t 256 288 320 288 0 -1 7.780576832436679 -0.7012139808257767
w 320 208 320 240 0
w 320 240 320 272 0
w 320 304 320 352 0
R 256 240 192 240 0 1 40.0 5.0 0.0 0.0 0.5
w 320 128 320 176 0
R 320 128 320 80 0 0 40.0 10.0 0.0 0.0 0.5
R 320 352 320 400 0 0 40.0 -10.0 0.0 0.0 0.5
w 320 240 400 240 0
r 400 240 400 352 0 10.0
g 400 352 400 384 0
O 400 240 448 240 0
w 256 240 256 288 0
w 256 192 256 240 0
o 5 64 0 34 6.0 0.003125 0 -1
o 12 64 0 34 6.0 4.8828125E-5 1 -1


circuit.zip > capmultcaps.txt

$ 1 5.0E-6 10 54 5.0 50
v 176 96 176 32 0 1 80.0 5.0 0.0
r 176 32 336 32 0 200.0
c 336 32 336 96 0 7.999999999999999E-5 -0.5102063628995691
w 176 96 336 96 0
v 176 192 176 128 0 1 80.0 5.0 0.0
r 176 128 336 128 0 200.0
w 176 192 336 192 0
c 336 128 336 192 0 1.0E-5 -3.485547023514335
v 176 288 176 224 0 1 80.0 5.0 0.0
w 176 288 336 288 0
c 336 224 336 288 0 1.0E-6 -3.321428082201859
r 176 224 336 224 0 200.0
o 2 64 0 1 1.25 0.05
o 7 64 0 1 5.0 0.05
o 10 64 0 1 5.0 0.05


circuit.zip > tllight.txt

$ 1 1.0E-11 25.237822143832553 37 120.0 50
171 128 176 384 176 0 6.000000000000001E-8 300.0 64 0.0
r 128 176 80 176 0 10.0
w 80 240 128 240 0
w 512 176 544 176 0
w 512 240 544 240 0
r 544 176 544 240 0 70.0
v 80 240 80 176 0 1 60.0 120.0 0.0 1.5707963267948966 0.03
g 384 240 384 256 0
g 432 240 432 256 0
g 512 240 512 256 0
171 432 176 512 176 0 1.0E-8 300.0 64 0.0
s 384 176 432 176 0 0 false
o 6 256 0 35 160.0 1.6 0 -1
o 5 256 0 35 160.0 1.6 1 -1


circuit.zip > delayrc.txt

$ 1 5.0E-9 10 54 5.0
f 144 144 208 144 1
f 144 240 208 240 0
w 208 160 208 192 0
w 208 192 208 224 0
w 144 144 144 192 0
w 144 192 144 240 0
L 144 192 96 192 0 false false
R 208 128 208 80 0 0 40.0 5.0 0.0
g 208 256 208 288 0
r 208 192 288 192 0 1500.0
c 288 192 288 256 0 1.0E-8 4.973779073596618
g 288 256 288 288 0
w 288 192 336 192 0
w 336 192 336 144 0
w 336 192 336 240 0
f 336 144 400 144 1
f 336 240 400 240 0
w 400 160 400 192 0
w 400 192 400 224 0
M 400 192 448 192 0
g 400 256 400 288 0
R 400 128 400 80 0 0 40.0 5.0 0.0
o 6 64 0 6 5.0 9.765625E-5 0
o 19 64 0 6 5.0 9.765625E-5 0
h 2 9 10


circuit.zip > filt-vcvs-lopass.txt

$ 1 5.0E-6 10.391409633455755 65 5.0 50
r 160 176 240 176 0 10000.0
r 240 176 320 176 0 10000.0
r 480 192 480 256 0 5860.0
r 480 256 480 320 0 10000.0
g 480 320 480 336 0
w 240 128 240 176 0
c 320 176 320 256 0 1.59E-7 0.00526783980718932
g 320 256 320 272 0
w 320 176 368 176 0
a 368 192 480 192 1 15.0 -15.0
w 368 208 368 256 0
w 368 256 480 256 0
w 480 192 496 192 0
w 496 192 496 128 0
c 496 128 240 128 0 1.59E-7 3.118399353779175
O 496 192 560 192 0
p 160 176 160 256 0
g 160 256 160 272 0
170 160 176 128 176 3 20.0 800.0 5.0 0.2
o 16 64 0 34 10.0 9.765625E-5 0 -1
o 15 64 0 34 10.0 4.8828125E-5 1 -1


circuit.zip > 555pulsemod.txt

$ 1 5.0E-6 4.8 56 5.0 50
165 240 128 256 128 0 5.0
R 304 96 304 80 0 0 40.0 5.0 0.0
R 304 288 304 336 0 3 20.0 2.0 3.0
O 368 192 416 192 0
w 240 160 208 160 0
r 208 160 208 96 0 300.0
w 208 96 304 96 0
w 208 256 240 256 0
c 208 256 208 304 0 3.0E-6 2.1430988725222426
g 208 304 208 320 0
w 208 224 208 256 0
w 208 224 240 224 0
r 208 160 208 224 0 300.0
o 2 32 0 6 5.0 3.90625E-4 0 ctl
o 3 32 0 6 5.0 9.765625E-5 0 output


circuit.zip > dac.txt

$ 1 5.0E-6 10 50 5.0
w 208 128 208 192 0
w 320 208 320 128 0
r 208 128 320 128 0 160.6
g 208 288 208 320 0
w 208 192 176 192 0
w 176 192 176 160 0
r 176 160 112 160 0 200.0
r 112 224 176 224 0 400.0
L 112 160 80 160 0 true false 5.0 0.0
L 112 224 80 224 0 false false 5.0 0.0
w 176 160 176 96 0
r 112 288 176 288 0 800.0
r 112 96 176 96 0 100.0
L 112 96 80 96 0 true false 5.0 0.0
L 112 288 80 288 0 false false 5.0 0.0
a 208 208 320 208 0 15.0 -15.0
O 320 208 368 208 1
w 208 224 208 288 0
w 176 288 176 224 0
w 176 224 176 192 0


circuit.zip > 7segdecoder.txt

$ 3 5.0E-6 10.20027730826997 50 5.0 50
L 240 40 240 16 2 0 false 5.0 0.0
L 288 40 288 16 2 1 false 5.0 0.0
L 336 40 336 16 2 0 false 5.0 0.0
L 384 40 384 16 2 1 false 5.0 0.0
I 240 40 240 88 0 0.5
I 288 40 288 88 0 0.5
I 336 40 336 88 0 0.5
I 384 40 384 88 0 0.5
w 288 40 312 40 0
w 312 40 312 104 0
151 40 176 40 224 1 4 0.0
151 96 176 96 224 1 3 5.0
151 152 176 152 224 1 2 5.0
151 208 176 208 224 1 4 5.0
151 568 176 568 224 1 3 5.0
151 520 176 520 224 1 3 5.0
151 472 176 472 224 1 3 5.0
151 424 176 424 224 1 3 5.0
151 368 176 368 224 1 3 5.0
150 272 176 272 224 1 2 5.0
152 320 176 320 224 1 2 5.0
w 312 104 88 104 0
w 88 104 88 176 0
w 312 104 480 104 0
w 480 104 528 104 0
w 528 104 576 104 0
w 576 104 576 176 0
w 528 176 528 104 0
w 480 176 480 104 0
w 336 40 360 40 0
w 360 40 360 112 0
w 160 176 160 112 0
w 96 176 96 112 0
w 96 112 160 112 0
w 160 112 360 112 0
w 360 112 424 112 0
w 424 112 424 176 0
w 424 112 568 112 0
w 568 112 568 176 0
w 384 40 408 40 0
w 408 40 408 120 0
w 408 120 520 120 0
w 520 120 520 176 0
w 408 120 376 120 0
w 376 176 376 120 0
w 376 120 224 120 0
w 224 120 224 176 0
w 224 120 104 120 0
w 104 120 104 176 0
w 240 88 240 128 0
w 240 128 216 128 0
w 216 128 216 176 0
w 216 128 24 128 0
w 24 128 24 176 0
w 240 128 328 128 0
w 328 128 328 176 0
w 288 88 288 136 0
w 280 176 280 136 0
w 280 136 288 136 0
w 200 176 200 136 0
w 280 136 200 136 0
w 200 136 144 136 0
w 144 136 144 176 0
w 144 136 32 136 0
w 32 136 32 176 0
w 288 136 360 136 0
w 360 136 360 176 0
w 360 136 432 136 0
w 432 136 432 176 0
w 336 88 336 144 0
w 336 144 368 144 0
w 368 144 368 176 0
w 368 144 472 144 0
w 472 144 472 176 0
w 336 144 264 144 0
w 264 144 264 176 0
w 264 144 192 144 0
w 192 144 192 176 0
w 192 144 48 144 0
w 48 144 48 176 0
w 384 88 384 152 0
w 472 144 512 144 0
w 512 144 512 176 0
w 384 152 416 152 0
w 416 152 416 176 0
w 416 152 464 152 0
w 464 152 464 176 0
w 464 152 560 152 0
w 560 152 560 176 0
w 384 152 240 152 0
w 240 152 56 152 0
w 56 152 56 176 0
w 272 224 296 224 0
w 296 224 296 176 0
w 296 176 312 176 0
150 56 288 56 336 1 4 0.0
150 232 288 232 336 1 4 5.0
150 384 288 384 336 1 4 5.0
150 336 288 336 336 1 3 5.0
150 288 288 288 336 1 2 5.0
150 176 288 176 336 1 3 5.0
150 120 288 120 336 1 4 5.0
w 40 224 40 288 0
w 240 152 240 232 0
w 240 232 168 232 0
w 168 232 168 288 0
w 176 288 176 240 0
w 176 240 240 240 0
w 240 240 240 288 0
w 240 240 400 240 0
w 400 240 400 288 0
w 400 240 472 240 0
w 472 240 472 224 0
w 184 288 184 256 0
w 184 256 128 256 0
w 128 256 128 288 0
w 128 256 64 256 0
w 64 256 64 288 0
w 48 288 48 248 0
w 72 288 72 264 0
w 72 264 136 264 0
w 136 264 136 288 0
w 48 248 96 248 0
w 96 248 96 224 0
w 96 248 112 248 0
w 112 248 112 288 0
w 152 224 152 232 0
w 152 232 104 232 0
w 104 232 104 288 0
w 392 288 392 248 0
w 392 248 344 248 0
w 344 248 344 288 0
w 392 248 568 248 0
w 568 248 568 224 0
w 112 248 224 248 0
w 224 248 224 288 0
w 184 256 216 256 0
w 216 256 216 288 0
w 208 224 208 264 0
w 136 264 208 264 0
w 208 264 368 264 0
w 368 264 368 288 0
w 376 288 376 256 0
w 376 256 328 256 0
w 328 256 328 288 0
w 328 256 280 256 0
w 280 256 280 288 0
w 320 224 328 224 0
w 328 224 328 256 0
w 280 256 216 256 0
w 248 288 248 232 0
w 248 232 368 232 0
w 368 232 368 224 0
w 296 288 296 272 0
w 296 272 424 272 0
w 424 272 424 224 0
w 336 288 336 280 0
w 336 280 520 280 0
w 520 280 520 224 0
157 432 320 552 320 0
w 432 320 416 320 0
w 416 320 416 336 0
w 416 336 384 336 0
w 432 352 336 352 0
w 336 352 336 336 0
w 432 384 288 384 0
w 288 384 288 336 0
w 432 416 232 416 0
w 232 416 232 336 0
w 496 448 176 448 0
w 176 448 176 336 0
w 528 448 528 456 0
w 528 456 120 456 0
w 120 456 120 336 0
w 560 448 560 464 0
w 560 464 56 464 0
w 56 464 56 336 0


circuit.zip > tdrelax.txt

$ 1 5.0E-6 10.20027730826997 54 1.5 50
R 176 176 144 176 0 0 40.0 1.5 0.0 0.0 0.5
r 176 176 256 176 0 80.0
r 256 176 256 288 0 24.0
175 256 176 336 176 0
l 336 176 336 288 0 0.7 0.002697977898647033
O 336 176 384 176 0
g 256 288 256 304 0
g 336 288 336 304 0
o 3 64 0 35 0.0390625 0.00625 0 -1 diode
o 3 64 0 99 0.625 0.00625 1 -1
o 5 64 0 34 0.625 4.8828125E-5 2 -1 output


circuit.zip > dram.txt

$ 3 5.0E-6 5 86 5.0 50
w 400 16 424 16 0
c 424 16 424 48 0 1.0E-8 0
w 368 16 344 16 0
g 424 48 424 56 0
f 384 72 384 16 4
w 400 88 424 88 0
c 424 88 424 120 0 1.0E-8 5
w 368 88 344 88 0
g 424 120 424 128 0
f 384 144 384 88 4
w 344 16 344 88 0
w 400 160 424 160 0
c 424 160 424 192 0 1.0E-8 0
w 368 160 344 160 0
g 424 192 424 200 0
f 384 216 384 160 4
w 400 232 424 232 0
c 424 232 424 264 0 1.0E-8 5
w 368 232 344 232 0
f 384 288 384 232 4
w 344 160 344 232 0
w 344 88 344 160 0
w 384 72 320 72 0
w 384 144 320 144 0
w 384 216 320 216 0
w 384 288 320 288 0
150 280 72 320 72 1 2 0.0
150 280 144 320 144 1 2 0.0
150 280 216 320 216 1 2 5.0
150 280 288 320 288 1 2 0.0
w 232 64 280 64 0
w 232 64 232 136 0
w 232 136 280 136 0
w 232 136 232 152 0
w 280 208 232 208 0
I 232 152 232 208 0 0.5
w 232 208 232 280 0
w 232 280 280 280 0
w 280 80 264 80 0
w 264 80 264 224 0
w 264 224 280 224 0
w 280 152 256 152 0
I 208 224 208 296 0 0.5
w 208 224 264 224 0
w 256 152 256 296 0
w 208 296 256 296 0
w 256 296 280 296 0
L 208 224 160 224 2 false false 5.0 0.0
L 232 152 160 152 2 true false 5.0 0.0
w 344 304 408 304 0
a 408 312 456 312 3 5.0 0.0
R 408 320 376 320 0 0 40.0 2.5 0.0
w 456 312 456 352 0
159 344 352 456 352 0
159 280 352 344 352 0
x 84 195 100 195 0 12 row select
g 424 264 424 272 0
w 344 232 344 304 0
w 344 304 344 352 0
w 280 352 280 392 0
L 280 392 160 392 0 false false 5.0 0.0
L 208 360 160 360 0 true true 5.0 0.0
w 208 360 208 376 0
w 312 376 312 368 0
w 400 376 400 368 0
w 208 376 312 376 0
x 96 365 112 365 0 12 write
x 89 430 105 430 0 12 refresh
x 96 398 112 398 0 12 data
M 456 312 536 312 0 2.5
w 400 376 400 424 0
L 400 424 160 424 0 true true 5.0 0.0


circuit.zip > spark-marx.txt

$ 1 1.9999999999999998E-5 13.097415321081861 66 2000.0 50
r 160 144 256 144 0 4000000.0
c 256 144 256 256 0 2.4E-8 0
r 256 144 352 144 0 1000000.0
r 256 256 352 256 0 1000000.0
c 352 256 352 144 0 2.4E-8 0
r 352 144 448 144 0 1000000.0
r 352 256 448 256 0 1000000.0
c 448 256 448 144 0 2.4E-8 0
187 256 144 352 256 0 1000.0 1.0E9 4000.0 0.0015
187 352 144 448 256 0 1000.0 1.0E9 4000.0 0.0010
187 704 144 704 208 0 1000.0 1.0E9 11000.0 0.0010
g 704 288 704 320 0
R 160 144 128 144 0 0 40.0 5000.0 0.0 0.0 0.5
w 256 256 208 256 0
g 208 256 208 320 0
c 352 256 352 304 2 1.0E-11 0
c 448 256 448 304 2 1.0E-11 0
g 352 304 352 320 0
g 448 304 448 320 0
g 640 304 640 320 0
g 544 304 544 320 0
c 640 256 640 304 2 1.0E-11 0
c 544 256 544 304 2 1.0E-11 0
187 544 144 640 256 0 1000.0 1.0E9 4000.0 0.0010
187 448 144 544 256 0 1000.0 1.0E9 4000.0 0.0010
c 640 256 640 144 0 2.4E-8 0
r 544 256 640 256 0 1000000.0
r 544 144 640 144 0 1000000.0
c 544 256 544 144 0 2.4E-8 0
r 448 256 544 256 0 1000000.0
r 448 144 544 144 0 1000000.0
w 640 144 704 144 0
r 704 208 704 288 0 2000000.0
o 8 64 0 35 5120.0 9.765625E-5 0 -1
o 9 64 0 35 10240.0 9.765625E-5 1 -1
o 24 64 0 35 5120.0 9.765625E-5 2 -1
o 23 64 0 35 10240.0 9.765625E-5 3 -1
o 32 64 0 35 40.0 9.765625E-5 4 -1


circuit.zip > 555sequencer.txt

$ 3 5.0E-6 2.800975890892825 50 5.0 50
165 160 208 168 208 1 -0.0
w 160 224 152 224 0
w 152 224 152 272 0
w 152 272 160 272 0
c 152 272 152 336 0 2.0E-6 0.04950495049504953
w 152 224 152 192 0
r 152 192 152 136 0 1000.0
r 112 192 112 136 0 100.0
w 112 192 112 256 0
w 112 256 160 256 0
c 112 256 72 256 0 1.0E-5 4.534530440025719E-8
L 72 256 48 256 0 false true 5.0 0.0
w 112 136 152 136 0
w 152 136 192 136 0
w 192 136 192 192 0
82 112 136 48 136 0 0 40.0 5.0 0.0 0.0 0.5
g 152 336 152 352 0
w 224 240 224 256 0
c 224 256 272 256 0 1.0E-5 -4.9999993594834615
w 272 256 272 192 0
r 272 136 272 192 0 100.0
r 312 136 312 192 0 1000.0
w 192 136 272 136 0
w 272 136 312 136 0
165 320 208 352 208 1 -0.0
w 352 192 352 136 0
w 352 136 312 136 0
w 312 224 320 224 0
w 312 192 312 224 0
w 312 224 312 272 0
w 312 272 320 272 0
w 272 256 320 256 0
c 312 272 312 336 0 2.0E-6 0.04950495049504953
g 312 336 312 352 0
w 384 240 384 256 0
c 384 256 432 256 0 1.0E-5 -4.9999935925136505
w 432 256 432 192 0
r 432 192 432 136 0 100.0
r 472 136 472 192 0 1000.0
w 352 136 432 136 0
w 432 136 472 136 0
165 480 208 488 208 1 0.0
w 472 192 472 224 0
w 472 224 480 224 0
w 472 224 472 272 0
w 472 272 480 272 0
w 512 192 512 136 0
w 512 136 472 136 0
w 432 256 480 256 0
c 472 272 472 336 0 2.0E-6 0.04950495049504953
g 472 336 472 352 0
M 224 256 224 328 0 2.5
M 384 256 384 328 0 2.5
M 544 240 584 240 0 2.5
o 11 16 0 38 5.1 0.0015625 0 -1
o 51 16 0 38 7.781982421875E-5 4.8828125E-5 0 -1
o 52 16 0 38 5.1 9.765625E-5 0 -1
o 53 16 0 38 5.1 9.765625E-5 0 -1


circuit.zip > amp-invert.txt

$ 1 5.0E-6 10 57 5.0
v 96 256 96 112 0 1 40.0 5.0 0.0
g 96 256 96 304 0
r 96 112 192 112 0 1000.0
r 192 144 336 144 0 3000.0
w 336 144 336 192 0
w 192 112 192 144 0
w 192 144 192 176 0
w 96 256 192 256 0
w 192 208 192 256 0
a 192 192 336 192 0
O 336 192 400 192 0
o 0 64 0 2 5.0 0.025
o 10 64 0 2 20.0 9.765625E-5


circuit.zip > graycode.txt

$ 3 5.0E-6 23 50 5.0 50
R 144 152 104 152 1 2 200.0 2.5 2.5
154 304 152 432 152 0 2 0.0
154 304 224 432 224 0 2 5.0
154 304 296 432 296 0 2 0.0
w 240 312 304 312 0
w 304 240 304 280 0
w 240 96 304 96 0
w 304 96 304 136 0
w 304 96 432 96 0
M 432 96 472 96 0 2.5
M 432 152 472 152 0 2.5
M 432 224 472 224 0 2.5
M 432 296 472 296 0 2.5
164 144 152 224 152 0 4 0.0 5.0 0.0 0.0
w 240 96 240 152 0
w 240 184 304 184 0
w 304 184 304 168 0
w 304 184 304 208 0
w 240 248 240 312 0
w 240 216 264 216 0
w 264 216 264 240 0
w 264 240 304 240 0
R 144 248 104 248 0 0 40.0 5.0 0.0
o 9 64 0 6 5.0 9.765625E-5 0
o 10 64 0 6 5.0 9.765625E-5 0
o 11 64 0 6 5.0 9.765625E-5 0
o 12 64 0 6 5.0 9.765625E-5 0


circuit.zip > cc2impn.txt

$ 1 5.0E-6 1.1208435524800693 51 5.0 50
a 144 208 240 208 1 15.0 -15.0
f 240 176 288 176 0 1.5
f 240 240 288 240 1 1.5
w 240 176 240 208 0
w 240 208 240 240 0
w 288 192 288 208 0
w 288 208 288 224 0
w 288 208 336 208 0
w 144 288 144 224 1
w 288 256 288 320 0
f 336 368 288 368 0 1.5
f 336 368 384 368 0 1.5
w 288 320 336 320 0
w 336 320 336 368 0
w 288 320 288 352 0
f 336 112 288 112 1 1.5
f 336 112 384 112 1 1.5
w 288 128 288 160 0
w 288 160 336 160 0
w 336 160 336 112 0
172 144 192 80 192 0 6 2.6399999999999997 4.0 -4.0 0.0 0.5 Y Voltage
174 48 224 144 256 0 500.0 0.9158000000000001 X Resistance
r 96 256 96 320 0 100.0
g 96 320 96 336 0
R 288 96 288 48 0 0 40.0 10.0 0.0 0.0 0.5
R 384 96 384 48 0 0 40.0 10.0 0.0 0.0 0.5
R 288 384 288 432 0 0 40.0 -10.0 0.0 0.0 0.5
R 384 384 384 432 0 0 40.0 -10.0 0.0 0.0 0.5
w 144 288 336 288 2
w 336 288 336 208 0
f 496 112 448 112 1 1.5
f 496 112 544 112 1 1.5
w 496 112 496 160 0
w 496 160 448 160 0
w 448 128 448 160 0
w 384 128 384 160 0
f 496 368 448 368 0 1.5
f 496 368 544 368 0 1.5
w 448 320 496 320 0
w 496 320 496 368 0
w 448 320 448 352 0
w 544 352 544 208 0
w 544 208 544 128 0
w 384 320 384 352 0
w 384 160 448 320 0
w 384 320 448 160 0
R 448 384 448 432 0 0 40.0 -10.0 0.0 0.0 0.5
R 544 384 544 432 0 0 40.0 -10.0 0.0 0.0 0.5
R 448 96 448 48 0 0 40.0 10.0 0.0 0.0 0.5
R 544 96 544 48 0 0 40.0 10.0 0.0 0.0 0.5
r 592 208 592 272 0 100.0
g 592 272 592 288 0
w 544 208 592 208 1
x 99 172 114 178 0 24 Y
x 136 327 151 333 0 24 X
x 578 177 593 183 0 24 Z


circuit.zip > phasesplit.txt

$ 1 5.0E-6 18 64 10.0 53
w 192 96 288 96 0
r 192 96 192 192 0 150000.0
r 192 192 192 304 0 56000.0
t 192 192 288 192 0 1 -9.442348352812836 0.5777055611167752
r 288 208 288 304 0 4700.0
w 192 304 288 304 0
c 144 192 192 192 0 3.0E-6 -4.905240822514835
R 144 192 96 192 0 1 40.0 3.0 0.0
g 192 304 192 336 0
R 192 96 96 96 0 0 40.0 20.0 0.0
r 288 96 288 176 0 4700.0
c 288 208 352 208 0 3.0E-6 4.826735289331256
r 352 208 352 304 0 10000.0
w 288 304 352 304 0
c 288 176 384 176 0 3.0E-6 15.221446280055797
r 384 176 384 304 0 10000.0
w 352 304 384 304 0
O 384 176 448 176 0
O 352 208 448 208 0
o 17 64 0 6 5.0 9.765625E-5 0
o 18 64 0 6 5.0 9.765625E-5 0


circuit.zip > diff.txt

$ 1 5.0E-6 10 50 5.0
v 160 288 160 144 0 2 40.0 5.0 0.0
c 160 144 352 144 0 9.0E-6 4.999340978003125
r 352 144 352 288 0 120.0
w 160 288 352 288 0
o 0 64 0 2 10.0 9.765625E-5 0
o 2 64 0 3 20.0 0.2 0
h 2 2 1


circuit.zip > indseries.txt

$ 1 5.0E-6 10 50 5.0
v 48 336 48 64 0 0 40.0 5.0 0.0
S 144 144 144 64 0 false false 1
w 240 64 240 336 0
r 48 336 144 336 0 100.0
r 144 336 240 336 0 100.0
w 48 64 128 64 0
w 160 64 240 64 0
r 288 336 384 336 0 100.0
r 384 336 480 336 0 100.0
w 480 64 480 336 0
S 384 144 384 64 0 false false 1
w 288 64 368 64 0
w 400 64 480 64 0
v 288 336 288 64 0 0 40.0 5.0 0.0
l 384 144 384 336 0 1.0 0
l 144 144 144 240 0 0.1 0
l 144 240 144 336 0 0.9 0


circuit.zip > currentsrcramp.txt

$ 1 5.0E-6 15 53 10.0
t 176 256 240 256 0 1 0.6557323083416877 0.6568475020864442
r 240 272 240 320 0 100.0
g 240 320 240 352 0
R 176 256 128 256 0 0 40.0 2.0 0.0
w 240 240 240 192 0
w 240 192 336 192 0
w 240 96 336 96 0
R 240 96 240 48 0 0 40.0 10.0 0.0
c 240 96 240 192 0 4.9999999999999996E-5 0
r 336 96 336 192 0 10000.0
w 240 96 192 96 0
w 240 192 192 192 0
s 192 96 192 192 0 true true
o 9 128 0 2 10.0 7.8125E-4


circuit.zip > amp-integ.txt

$ 1 5.0E-6 10.391409633455755 57 5.0 50
g 96 224 96 272 0
w 336 112 336 160 0
w 192 80 192 112 0
w 192 112 192 144 0
w 192 176 192 224 0
a 192 160 336 160 0 15.0 -15.0
c 192 112 336 112 0 5.8E-6 0
O 336 160 400 160 0
v 96 224 96 144 0 2 40.0 5.0 0.0 3.141592653589793 0.5
v 96 144 96 80 0 2 80.0 2.0 0.0 0.0 0.5
p 128 224 128 80 0
w 96 224 128 224 0
w 128 224 192 224 0
w 96 80 128 80 0
r 128 80 192 80 0 1000.0
o 10 32 0 34 10.0 9.765625E-5 0 -1 input
o 7 32 0 34 11.0 9.765625E-5 1 -1 integral


circuit.zip > resistors.txt

$ 1 5.0E-6 10 50 5.0
v 96 368 96 48 0 0 40.0 5.0 0.0
w 96 48 192 48 1
w 192 48 288 48 0
w 288 48 384 48 0
s 192 48 192 128 0 false false
s 288 48 288 128 0 true false
s 384 48 384 128 0 false false
r 192 128 192 192 0 100.0
r 288 128 288 192 0 400.0
r 384 128 384 192 0 800.0
w 192 192 288 192 0
w 288 192 384 192 0
w 288 224 288 192 0
w 288 224 384 224 0
w 288 224 192 224 0
s 288 224 288 304 0 false false
s 192 224 192 304 0 true false
r 192 304 192 368 0 600.0
r 288 304 288 368 0 200.0
s 384 224 384 368 0 true false
w 96 368 192 368 0
w 192 368 288 368 0
w 288 368 384 368 0


circuit.zip > dtlinverter.txt

$ 1 5.0E-6 10 54 5.0
g 320 272 320 320 0
r 224 176 224 96 0 4700.0
r 320 96 320 176 0 1000.0
w 320 176 320 240 0
M 320 176 416 176 0
w 224 96 320 96 0
t 272 256 320 256 0 1 0.5852076661116874 0.622416726973117
d 224 256 272 256 0
d 224 256 176 256 0
w 224 176 224 256 0
L 176 256 128 256 0 false false
R 224 96 128 96 0 0 40.0 5.0 0.0


circuit.zip > 3-invert.txt

$ 1 5.0E-6 10.812258501325767 50 5.0 50
f 336 352 384 352 6 3.25
f 256 272 304 272 6 -1.75
f 256 208 304 208 7 -1.75
w 304 320 384 320 0
w 384 320 384 336 0
w 256 272 256 352 0
w 256 352 336 352 0
w 304 224 304 256 0
R 304 192 304 160 0 0 40.0 2.5 0.0 0.0 0.5
f 256 128 384 128 7 3.25
w 256 128 256 208 0
R 384 112 384 80 0 0 40.0 5.0 0.0 0.0 0.5
g 384 368 384 400 0
w 384 240 384 320 0
w 384 144 384 240 0
M 384 240 448 240 1 2.5
w 256 272 256 240 0
w 256 240 256 208 0
L 256 240 192 240 1 2 false 5.0 0.0
w 304 288 304 320 0


circuit.zip > 555lowduty.txt

$ 1 5.0E-6 10 69 10.0 50
165 224 144 272 144 0 0.0
w 224 176 192 176 0
r 192 176 192 240 0 150000.0
w 192 240 224 240 0
w 192 240 192 272 0
w 192 272 224 272 0
w 192 272 192 336 0
c 192 336 192 384 0 1.0E-7 4.232783461263634
g 192 384 192 400 0
r 192 336 304 336 0 10000.0
d 352 336 304 336 0
w 352 208 352 336 0
R 288 112 288 80 0 0 40.0 10.0 0.0
O 352 208 416 208 0
o 7 16 0 3 10.0 0.0015625 0
o 13 64 0 10 10.0 9.765625E-5 1


circuit.zip > pll2a.txt

$ 1 5.0E-6 15 64 5.0
158 416 208 448 208 0
c 512 208 512 240 0 1.0E-8 0
r 512 272 576 272 0 30000.0
r 512 304 576 304 0 1000000.0
w 576 272 576 304 0
g 576 304 576 336 0
R 128 160 64 160 0 2 970.0 2.5 2.5
w 128 192 128 304 0
w 128 304 416 304 0
g 304 240 304 272 0
w 416 176 416 208 0
O 128 304 80 304 0
a 336 112 416 112 1 15.0 -15.0
w 304 96 336 96 0
w 336 128 336 176 0
w 336 176 416 176 0
w 416 176 416 112 0
161 128 160 176 160 0
r 224 160 304 160 0 2000.0
w 304 96 304 160 0
c 304 160 304 192 0 9.999999999999999E-6 0
r 304 192 304 240 0 1000.0
o 6 16 0 14 5.0 4.8828125E-5 0
o 11 16 0 14 5.0 9.765625E-5 0
o 20 64 0 3 5.0 0.0025 1


circuit.zip > freqdouble.txt

$ 1 5.0E-6 6.75 61 5.0
158 416 192 448 192 0
c 512 192 512 224 0 1.0E-7 0
r 512 256 576 256 0 3000.0
r 512 288 576 288 0 100000.0
w 576 256 576 288 0
g 576 288 576 320 0
R 128 144 64 144 0 2 300.0 2.5 2.5
g 304 224 304 256 0
w 416 160 416 192 0
a 336 96 416 96 1 15.0 -15.0
w 304 80 336 80 0
w 336 112 336 160 0
w 336 160 416 160 0
w 416 160 416 96 0
161 128 144 176 144 0
r 224 144 304 144 0 2000.0
w 304 80 304 144 0
c 304 144 304 176 0 9.999999999999999E-6 0
155 128 240 144 240 0 5.0
w 224 240 224 208 0
w 224 208 128 208 0
w 128 208 128 176 0
w 224 304 224 336 0
w 224 336 96 336 0
w 96 336 96 240 0
w 96 240 128 240 0
w 128 272 64 272 0
w 64 272 64 352 0
w 64 352 416 352 0
w 416 352 416 288 0
O 416 352 480 352 0
r 304 176 304 224 0 1000.0
o 6 8 0 14 5.0 4.8828125E-5 0
o 30 8 0 14 5.0 9.765625E-5 0


circuit.zip > relayor.txt

$ 1 5.0E-6 10.20027730826997 44 5.0 50
178 112 176 192 176 0 1 0.1 1.4393787726652385E-9 0.05 1000000.0 0.02 50.0
178 304 176 384 176 0 1 0.1 7.78801831882807E-17 0.05 1000000.0 0.02 50.0
178 480 176 560 176 0 1 0.1 1.8053432778617287E-13 0.05 1000000.0 0.02 50.0
R 112 176 80 176 0 0 40.0 5.0 0.0 0.0 0.5
g 112 224 112 256 0
g 304 224 304 256 0
g 480 224 480 256 0
w 112 208 80 208 0
w 304 208 272 208 0
w 480 208 448 208 0
L 80 208 80 288 0 0 false 5.0 0.0
L 272 208 272 288 0 0 false 5.0 0.0
L 448 208 448 288 0 0 false 5.0 0.0
M 592 192 640 192 0 2.5
r 592 192 592 272 0 100.0
g 592 272 592 288 0
R 304 176 272 176 0 0 40.0 5.0 0.0 0.0 0.5
R 480 176 448 176 0 0 40.0 5.0 0.0 0.0 0.5
w 192 192 224 192 0
w 224 192 224 128 0
w 224 128 416 128 0
w 416 128 416 192 0
w 416 192 384 192 0
w 416 128 592 128 0
w 592 128 592 192 0
w 560 192 592 192 0


circuit.zip > transswitch.txt

$ 1 5.0E-6 10 50 5.0
v 144 352 144 80 0 0 40.0 5.0 0.0
w 144 80 256 80 0
t 256 256 368 256 0 1 0.5597337598267538 0.646589672025579
r 256 80 256 176 0 10000.0
s 256 176 256 256 0 true false
w 256 80 368 80 0
r 368 80 368 240 0 300.0
w 368 272 368 352 0
w 368 352 144 352 0


circuit.zip > mr-square.txt

$ 1 5.0E-8 9.78399845368213 72 1.0 50
g 320 304 320 320 0
m 320 192 320 304 0 100.0 16000.0 0 1.0E-8 1.0E-10
R 320 192 320 160 0 2 6300.0 1.0 0.0 0.0 0.5
o 1 64 0 35 1.25 7.8125E-4 0 -1
o 1 64 2 35 20480.0 9.765625E-5 1 -1
o 1 64 0 99 1.25 7.8125E-4 2 -1


circuit.zip > clockedsrff.txt

$ 1 5.0E-6 10 50 5.0
151 256 272 368 272 0 2 5
151 256 144 368 144 0 2 0
w 368 144 368 176 0
w 368 176 256 240 0
w 368 272 368 240 0
w 368 240 256 176 0
w 256 176 256 160 0
w 256 240 256 256 0
M 368 144 448 144 0
M 368 272 448 272 0
151 128 128 256 128 0 2 5
151 128 288 256 288 0 2 0
w 128 304 96 304 0
w 96 304 96 144 0
w 96 144 128 144 0
L 128 112 64 112 0 true true
L 128 272 64 272 0 true true
R 96 304 96 352 1 2 100.0 2.5 2.5
o 15 64 0 6 5.0 9.765625E-5 0 set
o 16 64 0 6 5.0 9.765625E-5 0 reset
o 8 64 0 6 5.0 9.765625E-5 0 Q
o 17 64 0 6 5.0 9.765625E-5 0 clk


circuit.zip > ccvccs.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
179 208 192 336 192 0 1.0
r 208 192 160 192 0 100.0
g 160 192 160 208 0
R 208 256 176 256 0 1 40.0 5.0 0.0 1.5707963267948966 0.5
174 368 224 464 272 0 200.0 0.5297000000000001 Resistance
g 416 272 416 288 0
w 304 224 368 224 0
o 3 64 0 34 5.0 9.765625E-5 0 -1
o 6 64 0 33 40.0 0.1 0 -1


circuit.zip > filt-hipass-l.txt

$ 1 5.0E-6 6.499443210467817 50 5.0 50
O 400 160 512 160 0
g 400 288 400 320 0
r 240 160 400 160 0 187.0
l 400 160 400 288 0 0.06545 0
170 240 160 208 160 3 20.0 1000.0 5.0 0.1
o 4 16 0 34 5.0 9.765625E-5 0 -1
o 0 16 0 34 5.0 9.765625E-5 1 -1
h 5 2 5


circuit.zip > capmult.txt

$ 1 5.0E-6 18.278915558614752 60 5.0 50
a 368 192 480 192 0 15.0 -15.0 1000000.0
w 368 176 368 128 0
w 368 128 480 128 0
w 480 128 480 192 0
w 480 128 480 96 0
r 480 96 304 96 0 1000.0
w 304 96 304 208 0
r 304 208 368 208 0 100000.0
c 368 208 368 288 0 1.0E-7 2.3114879192195272
g 368 288 368 320 0
w 304 208 240 208 0
R 240 208 192 208 0 2 30.0 5.0 0.0 0.0 0.5
R 240 368 192 368 0 2 30.0 5.0 0.0 0.0 0.5
c 240 368 304 368 0 1.0E-5 2.3114879192202653
r 304 368 368 368 0 1000.0
g 368 368 368 400 0
x 377 70 407 76 0 24 R2
x 323 180 353 186 0 24 R1
x 415 258 447 264 0 24 C1
x 258 408 290 414 0 24 C2
x 319 408 349 414 0 24 R3
o 13 64 0 34 5.0 0.003125 0 -1
o 8 64 0 34 5.0 9.765625E-5 1 -1


circuit.zip > mr-crossbar.txt

$ 1 5.0E-9 5.023272298708815 52 1.0 50
m 208 128 256 80 0 100.0 250000.0 0 1.0E-8 1.0E-10
m 288 128 336 80 0 100.0 250000.0 0 1.0E-8 1.0E-10
m 208 240 256 192 0 100.0 250000.0 1.0e-8 1.0E-8 1.0E-10
m 288 240 336 192 0 100.0 250000.0 0 1.0E-8 1.0E-10
w 208 128 288 128 0
w 208 240 288 240 0
w 256 80 256 192 0
w 336 80 336 192 0
w 256 192 256 304 0
w 336 192 336 304 0
w 288 240 368 240 0
w 368 240 448 240 0
w 288 128 368 128 0
w 368 128 448 128 0
m 368 128 416 80 0 100.0 250000.0 1.0e-8 1.0E-8 1.0E-10
m 448 128 496 80 0 100.0 250000.0 1.0e-8 1.0E-8 1.0E-10
m 368 240 416 192 0 100.0 250000.0 1.0e-8 1.0E-8 1.0E-10
m 448 240 496 192 0 100.0 250000.0 0 1.0E-8 1.0E-10
w 416 80 416 192 0
w 416 192 416 304 0
w 496 80 496 192 0
w 496 192 496 304 0
S 96 176 208 176 0 0 false 0 false 0
w 208 128 208 160 0
w 208 192 208 240 0
R 96 176 48 176 0 1 500000.0 1.0 0.0 0.0 0.5
r 256 304 256 368 0 10000.0
r 336 304 336 368 0 10000.0
r 416 304 416 368 0 10000.0
r 496 304 496 368 0 10000.0
g 256 368 256 384 0
g 336 368 336 384 0
g 416 368 416 384 0
g 496 368 496 384 0
w 448 128 512 128 0
w 448 240 512 240 0
r 512 128 576 128 0 1000.0
r 512 240 576 240 0 1000.0
g 576 240 576 272 0
g 576 128 576 160 0
o 26 32 0 54 1.1 9.765625E-5 0 -1
o 27 32 0 54 1.1 9.765625E-5 0 -1
o 28 32 0 54 1.1 9.765625E-5 0 -1
o 29 32 0 54 1.1 9.765625E-5 0 -1


circuit.zip > diodeclip.txt

$ 1 5.0E-6 11.251013186076355 58 5.0 50
r 272 160 320 160 0 200.0
r 320 160 320 240 0 100.0
d 320 240 320 288 0
R 320 288 320 320 0 0 40.0 5.0 0.0 0.0 0.5
O 320 160 384 160 0
R 272 160 240 160 0 3 40.0 10.0 0.0 0.0 0.5
o 5 64 0 35 10.0 0.1 0 -1
o 4 64 0 34 10.0 9.765625E-5 1 -1


circuit.zip > tlmismatch.txt

$ 1 5.0E-12 12.682493960703473 50 5.0 50
171 112 192 256 192 0 1.0E-8 75.0 64 0.0
171 256 192 384 192 0 1.0E-8 500.0 64 0.0
171 384 192 512 192 0 1.0E-8 75.0 64 0.0
r 112 192 64 192 0 75.0
w 64 256 112 256 0
w 512 192 544 192 0
w 512 256 544 256 0
r 544 192 544 256 0 75.0
v 64 256 64 192 0 2 1.0E7 2.5 2.5 0.0 0.03
g 256 256 256 272 0
g 384 256 384 272 0
g 512 256 512 272 0


circuit.zip > relay.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
178 240 176 384 176 0 1 0.2 0.04166643702749262 0.05 1000000.0 0.02 20.0
172 240 208 176 208 0 6 5.0 5.0 0.0 0.0 0.5 Coil Voltage
g 240 288 240 304 0
R 240 176 240 112 0 0 40.0 5.0 0.0 0.0 0.5
r 384 160 464 160 0 100.0
r 384 192 464 192 0 100.0
r 240 224 240 288 0 100.0
w 464 160 464 192 0
w 464 192 464 288 0
g 464 288 464 304 0


circuit.zip > swtreedac.txt

$ 3 5.0E-6 10.391409633455755 50 5.0 50
160 312 192 248 192 1
160 312 272 248 272 1
160 312 352 248 352 1
160 312 112 248 112 1
160 376 152 312 152 1
160 376 312 312 312 1
160 440 232 376 232 1
w 376 152 376 216 0
w 376 248 376 312 0
w 312 272 312 296 0
w 312 328 312 352 0
w 312 168 312 192 0
w 312 112 312 136 0
O 440 232 496 232 1
r 168 208 168 256 0 100.0
r 168 256 168 304 0 100.0
r 168 304 168 352 0 100.0
r 168 352 168 400 0 100.0
r 168 208 168 160 0 100.0
r 168 160 168 112 0 100.0
r 168 112 168 64 0 100.0
w 168 64 248 64 0
w 248 64 248 96 0
w 168 112 216 112 0
w 168 160 248 160 0
w 248 160 248 176 0
w 168 208 248 208 0
w 168 256 248 256 0
w 168 304 248 304 0
w 248 304 248 288 0
w 168 352 208 352 0
w 208 352 208 336 0
w 208 336 248 336 0
w 168 400 248 400 0
w 248 400 248 368 0
w 216 112 216 128 0
w 216 128 248 128 0
82 168 64 168 32 0 0 40.0 7.001 0.0 0.0 0.5
g 168 400 168 424 0
w 280 128 280 208 0
w 280 208 280 288 0
w 280 288 280 368 0
w 344 168 344 328 0
w 408 248 408 368 0
w 344 328 344 368 0
L 408 368 464 368 0 false false 5.0 0.0
w 344 368 344 400 0
L 344 400 464 400 0 false false 5.0 0.0
w 280 368 280 432 0
L 280 432 464 432 0 false false 5.0 0.0


circuit.zip > cmosnand.txt

$ 0 5.0E-6 10 50 5.0
f 288 128 352 128 5
f 288 224 352 224 4
w 352 144 352 176 0
w 352 176 352 208 0
M 352 176 416 176 0
f 288 288 352 288 4
w 352 240 352 272 0
g 352 304 352 336 0
w 288 128 288 224 0
f 192 128 256 128 5
w 256 80 256 112 0
w 256 80 352 80 0
w 352 80 352 112 0
R 256 80 192 80 0 0 40.0 5.0 0.0
w 192 128 192 288 0
w 192 288 288 288 0
L 288 224 128 224 0 false false
L 192 288 128 288 0 false false
w 256 144 256 176 0
w 256 176 352 176 0


circuit.zip > amp-dfdx.txt

$ 1 5.0E-6 10 57 5.0
v 112 256 112 96 0 3 40.0 5.0 0.0
g 112 256 112 304 0
w 352 128 352 192 0
w 208 128 208 176 0
w 112 256 208 256 0
w 208 208 208 256 0
a 208 192 352 192 4
c 112 96 208 96 0 2.0E-6 0.16559840149986407
r 208 128 352 128 0 5000.0
w 208 96 208 128 0
O 352 192 416 192 0
o 0 32 0 2 10.0 0.0125 0
o 10 64 0 2 5.0 9.765625E-5 0


circuit.zip > pushpull.txt

$ 1 5.0E-6 10.391409633455755 43 10.0 42
t 256 192 320 192 0 1 -13.466578126476486 0.7195904601612297
t 256 288 320 288 0 -1 5.091136762641694 -0.72269465072059
w 320 208 320 240 0
w 320 240 320 272 0
w 320 304 320 352 0
r 256 288 256 352 0 220.0
r 256 192 256 128 0 220.0
d 256 240 256 288 0
R 256 240 192 240 0 1 40.0 5.0 0.0 0.0 0.5
w 256 352 320 352 0
w 256 128 320 128 0
w 320 128 320 176 0
R 256 128 256 80 0 0 40.0 10.0 0.0 0.0 0.5
R 256 352 256 400 0 0 40.0 -10.0 0.0 0.0 0.5
d 256 192 256 240 0
w 320 240 400 240 0
r 400 240 400 352 0 10.0
g 400 352 400 384 0
O 400 240 448 240 0
o 8 64 0 34 6.0 0.025 0 -1
o 18 64 0 34 6.0 9.765625E-5 1 -1


circuit.zip > grid2.txt

$ 17 5.0E-6 2 46 5.0
v 272 256 272 208 0 0
r 32 64 32 112 0 10
r 32 112 32 160 0 10
r 32 160 32 208 0 10
r 32 208 32 256 0 10
r 32 256 32 304 0 10
r 32 304 32 352 0 10
r 32 352 32 400 0 10
r 80 64 80 112 0 10
r 80 112 80 160 0 10
r 80 160 80 208 0 10
r 80 208 80 256 0 10
r 80 256 80 304 0 10
r 80 304 80 352 0 10
r 80 352 80 400 0 10
r 128 64 128 112 0 10
r 128 112 128 160 0 10
r 128 160 128 208 0 10
r 128 208 128 256 0 10
r 128 256 128 304 0 10
r 128 304 128 352 0 10
r 128 352 128 400 0 10
r 176 64 176 112 0 10
r 176 112 176 160 0 10
r 176 160 176 208 0 10
r 176 208 176 256 0 10
r 176 256 176 304 0 10
r 176 304 176 352 0 10
r 176 352 176 400 0 10
r 224 64 224 112 0 10
r 224 112 224 160 0 10
r 224 160 224 208 0 10
r 224 208 224 256 0 10
r 224 256 224 304 0 10
r 224 304 224 352 0 10
r 224 352 224 400 0 10
r 272 64 272 112 0 10
r 272 112 272 160 0 10
r 272 160 272 208 0 10
r 272 256 272 304 0 10
r 272 304 272 352 0 10
r 272 352 272 400 0 10
r 320 64 320 112 0 10
r 320 112 320 160 0 10
r 320 160 320 208 0 10
r 320 208 320 256 0 10
r 320 256 320 304 0 10
r 320 304 320 352 0 10
r 320 352 320 400 0 10
r 368 64 368 112 0 10
r 368 112 368 160 0 10
r 368 160 368 208 0 10
r 368 208 368 256 0 10
r 368 256 368 304 0 10
r 368 304 368 352 0 10
r 368 352 368 400 0 10
r 416 64 416 112 0 10
r 416 112 416 160 0 10
r 416 160 416 208 0 10
r 416 208 416 256 0 10
r 416 256 416 304 0 10
r 416 304 416 352 0 10
r 416 352 416 400 0 10
r 464 64 464 112 0 10
r 464 112 464 160 0 10
r 464 160 464 208 0 10
r 464 208 464 256 0 10
r 464 256 464 304 0 10
r 464 304 464 352 0 10
r 464 352 464 400 0 10
r 512 64 512 112 0 10
r 512 112 512 160 0 10
r 512 160 512 208 0 10
r 512 208 512 256 0 10
r 512 256 512 304 0 10
r 512 304 512 352 0 10
r 512 352 512 400 0 10



r 32 64 80 64 0 10
r 32 112 80 112 0 10
r 32 160 80 160 0 10
r 32 208 80 208 0 10
r 32 256 80 256 0 10
r 32 304 80 304 0 10
r 32 352 80 352 0 10
r 32 400 80 400 0 10
r 80 64 128 64 0 10
r 80 112 128 112 0 10
r 80 160 128 160 0 10
r 80 208 128 208 0 10
r 80 256 128 256 0 10
r 80 304 128 304 0 10
r 80 352 128 352 0 10
r 80 400 128 400 0 10
r 128 64 176 64 0 10
r 128 112 176 112 0 10
r 128 160 176 160 0 10
r 128 208 176 208 0 10
r 128 256 176 256 0 10
r 128 304 176 304 0 10
r 128 352 176 352 0 10
r 128 400 176 400 0 10
r 176 64 224 64 0 10
r 176 112 224 112 0 10
r 176 160 224 160 0 10
r 176 208 224 208 0 10
r 176 256 224 256 0 10
r 176 304 224 304 0 10
r 176 352 224 352 0 10
r 176 400 224 400 0 10
r 224 64 272 64 0 10
r 224 112 272 112 0 10
r 224 160 272 160 0 10
r 224 208 272 208 0 10
r 224 256 272 256 0 10
r 224 304 272 304 0 10
r 224 352 272 352 0 10
r 224 400 272 400 0 10
r 272 64 320 64 0 10
r 272 112 320 112 0 10
r 272 160 320 160 0 10
r 272 208 320 208 0 10
r 272 256 320 256 0 10
r 272 304 320 304 0 10
r 272 352 320 352 0 10
r 272 400 320 400 0 10
r 320 64 368 64 0 10
r 320 112 368 112 0 10
r 320 160 368 160 0 10
r 320 208 368 208 0 10
r 320 256 368 256 0 10
r 320 304 368 304 0 10
r 320 352 368 352 0 10
r 320 400 368 400 0 10
r 368 64 416 64 0 10
r 368 112 416 112 0 10
r 368 160 416 160 0 10
r 368 208 416 208 0 10
r 368 256 416 256 0 10
r 368 304 416 304 0 10
r 368 352 416 352 0 10
r 368 400 416 400 0 10
r 416 64 464 64 0 10
r 416 112 464 112 0 10
r 416 160 464 160 0 10
r 416 208 464 208 0 10
r 416 256 464 256 0 10
r 416 304 464 304 0 10
r 416 352 464 352 0 10
r 416 400 464 400 0 10
r 464 64 512 64 0 10
r 464 112 512 112 0 10
r 464 160 512 160 0 10
r 464 208 512 208 0 10
r 464 256 512 256 0 10
r 464 304 512 304 0 10
r 464 352 512 352 0 10
r 464 400 512 400 0 10


circuit.zip > scractrig.txt

$ 1 5.0E-6 10.20027730826997 49 5.0 50
177 256 176 256 352 0 -15.051976407130628 -15.051976407130628
r 256 176 256 112 0 50.0
R 256 112 256 80 0 1 40.0 20.0 0.0 0.0 0.5
d 368 288 288 288 1 0.805904783
g 256 352 256 384 0
w 256 176 304 176 0
w 368 208 368 288 0
174 368 208 304 144 0 1800.0 0.8069000000000001 Trigger Voltage
o 2 64 0 33 10.0 0.2 0 -1


circuit.zip > opint.txt

$ 1 4.9999999999999996E-6 1.5642631884188172 60 15.0 66
t 64 128 96 128 0 1 -14.46038257128449 0.4699505311909224 100.0
t 128 192 96 192 0 -1 13.167263810426565 -0.46995053119092234 100.0
t 96 256 144 256 0 1 -29.043132450831923 0.4727778362899038 100.0
t 144 320 96 320 0 1 -0.4727778362899038 0.46966901844007936 100.0
r 96 336 96 432 0 1000.0
r 144 320 144 432 0 50000.0
w 144 272 144 320 0
w 96 256 96 304 0
w 96 256 96 208 0
w 96 144 96 176 0
t 240 128 208 128 0 1 -14.524414993260976 0.43793432020267864 100.0
t 176 192 208 192 0 -1 14.106489865918032 -0.43793432020267853 100.0
w 208 144 208 176 0
w 128 192 176 192 0
w 176 192 176 224 0
w 208 208 208 256 0
t 144 320 208 320 0 1 0.4664482192015633 0.4735715003080774 100.0
w 208 256 208 304 0
r 208 336 208 432 0 1000.0
w 96 432 144 432 0
w 144 432 208 432 0
R 96 432 48 432 0 0 40.0 -15.0 0.0 0.0 0.5
t 208 64 160 64 0 -1 0.0 -0.47558500673902415 100.0
t 208 64 304 64 0 -1 15.400283633666334 -0.47558500673902415 100.0
w 208 112 160 112 0
w 96 112 160 112 0
w 160 80 160 112 0
w 208 64 208 112 0
w 304 80 304 224 0
w 304 224 176 224 0
w 160 48 160 32 0
w 160 32 304 32 0
w 304 32 304 48 0
w 144 240 144 32 0
w 144 32 160 32 0
R 144 32 48 32 0 0 40.0 15.0 0.0 0.0 0.5
t 336 320 304 320 0 1 -13.556006792099927 0.4758387148737153 100.0
t 336 320 368 320 0 1 0.0 0.5681245674947153 100.0
w 304 224 304 304 0
r 304 336 304 432 0 5000.0
w 208 432 304 432 0
w 304 432 368 432 0
w 368 432 368 336 0
w 336 320 336 272 0
w 336 272 368 272 0
w 368 272 368 304 0
r 368 272 368 112 0 39000.0
t 432 64 368 64 0 -1 0.0 -0.5579117469270845 100.0
t 432 64 512 64 0 -1 -0.5576629644457523 -0.5579117469270845 100.0
w 368 80 368 112 0
w 432 64 432 112 0
w 432 112 368 112 0
w 304 32 368 32 0
w 368 32 368 48 0
w 368 32 512 32 0
w 512 32 512 48 0
w 512 80 512 112 0
w 512 112 544 112 0
t 544 112 592 112 0 1 -2.4878248133219927E-4 0.006121869393414414 100.0
t 592 160 544 160 0 1 -0.006121869393414414 9.769962616701378E-13 100.0
w 544 112 544 144 0
w 592 128 592 160 0
w 592 96 592 32 0
w 592 32 512 32 0
w 544 176 544 224 0
r 592 160 592 224 0 25.0
w 544 224 592 224 0
r 592 224 592 304 0 50.0
w 512 112 512 160 0
w 592 336 592 432 0
t 480 224 512 224 0 1 -1.58176582942815E-9 2.636269869071839E-9 100.0
r 480 224 480 160 0 4500.0
r 480 224 480 288 0 7500.0
w 480 288 512 288 0
w 512 288 512 240 0
w 512 208 512 160 0
w 512 160 480 160 0
t 512 320 592 320 0 -1 29.999751213300634 0.006121865178858599 100.0
w 512 288 512 320 0
t 480 336 512 336 0 1 -29.999751203174743 1.0122121807398798E-8 100.0
t 512 368 432 368 0 1 -0.0176414936728424 3.767652856367931E-12 100.0
r 512 368 512 432 0 50.0
w 480 336 480 384 0
r 480 384 480 432 0 50000.0
w 480 432 512 432 0
w 512 432 592 432 0
w 480 432 432 432 0
w 432 432 432 384 0
w 368 432 432 432 0
w 512 352 512 368 0
t 432 304 480 304 0 1 -29.98210971962402 0.017641483550720594 100.0
w 432 304 432 352 0
w 480 320 480 336 0
w 208 256 432 256 0
w 432 256 432 304 0
w 480 160 432 160 0
c 432 160 432 256 0 3.0E-11 29.982109723842058
O 592 224 624 224 0
R 64 128 64 176 0 1 120.0 0.1 0.0 0.0 0.5
g 240 128 240 176 0
x 245 105 259 111 0 24 -
x 41 105 60 111 0 24 +
o 98 64 0 34 0.625 9.765625E-5 0 -1
o 97 16 0 34 20.0 9.765625E-5 1 -1


circuit.zip > besselbutter.txt

$ 1 5.0E-6 1.1685319768402522 49 5.0 50
c 208 96 208 192 0 6.083084599140672E-6 -4.999993387010308
l 144 96 208 96 0 0.022668006177034163 -0.09999921210610777
w 464 96 528 96 0
r 528 96 528 192 0 50.0
g 208 192 208 208 0
g 528 192 528 208 0
O 528 96 576 96 0
c 272 96 272 192 0 4.3948121369507934E-6 -5.000480507723924
l 208 96 272 96 0 0.012560685575556797 -0.1000058296956149
g 272 192 272 208 0
c 336 96 336 192 0 3.2704856949098034E-6 -4.999333512699853
l 272 96 336 96 0 0.009621226664444704 -0.10000178631255717
g 336 192 336 208 0
c 400 96 400 192 0 1.9267432478517496E-6 -4.9985368414433955
l 336 96 400 96 0 0.006573613744873482 -0.0999748516250718
g 400 192 400 208 0
c 464 96 464 192 0 3.953712484972596E-7 -4.99868176000584
l 400 96 464 96 0 0.0029400148153217306 -0.09997178060465385
g 464 192 464 208 0
g 464 352 464 368 0
l 400 272 464 272 0 0.0037033695101520102 -0.10336833872744124
c 464 272 464 352 0 4.979463676217806E-7 -5.226853560161393
g 400 352 400 368 0
l 336 272 400 272 0 0.0082809859705 -0.0973916022814173
c 400 272 400 352 0 2.427517293683718E-6 -5.045542492104053
g 336 352 336 368 0
l 272 272 336 272 0 0.012016178653842758 -0.09363197455759392
c 336 272 336 352 0 4.112858198910477E-6 -4.706292766508745
g 272 352 272 368 0
l 208 272 272 272 0 0.01442033310922977 -0.10308412962676379
c 272 272 272 352 0 5.369543031057315E-6 -4.878852155807363
O 528 272 576 272 0
g 528 352 528 368 0
g 208 352 208 368 0
r 528 272 528 352 0 50.0
w 464 272 528 272 0
l 144 272 208 272 0 0.012448659190544548 -0.09950752670846397
c 208 272 208 352 0 5.9051646250635805E-6 -5.184027928619852
w 144 96 144 192 0
w 144 192 144 272 0
R 144 192 96 192 0 2 80.0 5.0 0.0 0.0 0.5
o 6 32 0 34 10.0 9.765625E-5 0 -1 bessel
o 31 32 0 34 10.0 9.765625E-5 1 -1 butterworth


circuit.zip > cc2imp.txt

$ 1 5.0E-6 1.1208435524800693 51 5.0 50
a 160 208 272 208 1 15.0 -15.0
f 272 176 336 176 0 1.5
f 272 240 336 240 1 1.5
w 272 176 272 208 0
w 272 208 272 240 0
w 336 192 336 208 0
w 336 208 336 224 0
w 336 208 368 208 0
w 160 288 160 224 1
w 336 256 336 320 0
f 400 368 336 368 0 1.5
f 400 368 464 368 0 1.5
w 336 320 400 320 0
w 400 320 400 368 0
w 336 320 336 352 0
f 400 112 336 112 1 1.5
f 400 112 464 112 1 1.5
w 336 128 336 160 0
w 336 160 400 160 0
w 400 160 400 112 0
w 464 128 464 208 0
w 464 208 464 352 0
172 160 192 96 192 0 6 2.0 4.0 -4.0 0.0 0.5 Y Voltage
174 64 224 160 256 0 500.0 0.7079000000000001 X Resistance
r 112 256 112 320 0 100.0
g 112 320 112 336 0
w 464 208 512 208 1
r 512 208 576 208 0 100.0
g 576 208 576 224 0
R 336 96 336 48 0 0 40.0 10.0 0.0 0.0 0.5
R 464 96 464 48 0 0 40.0 10.0 0.0 0.0 0.5
R 336 384 336 432 0 0 40.0 -10.0 0.0 0.0 0.5
R 464 384 464 432 0 0 40.0 -10.0 0.0 0.0 0.5
w 160 288 368 288 2
w 368 288 368 208 0
x 94 165 109 171 0 24 Y
x 156 326 171 332 0 24 X
x 501 177 516 183 0 24 Z


circuit.zip > divideby3.txt

$ 1 5.0E-6 10 50 5.0
155 112 192 144 192 0 0.0
155 304 192 352 192 0 0.0
w 304 176 304 192 0
w 304 224 304 304 0
w 112 224 112 304 0
w 112 304 304 304 0
w 112 192 112 128 0
w 400 128 400 192 0
w 112 128 208 128 0
w 208 128 208 160 0
w 208 128 400 128 0
R 112 224 48 224 1 2 150.1 2.5 2.5
M 400 192 464 192 0
153 208 176 304 176 0 2 0.0
o 11 32 0 14 5.0 9.765625E-5 0
o 12 32 0 14 5.0 9.765625E-5 0


circuit.zip > notch.txt

$ 1 5.0E-6 10.391409633455755 50 5.0 40
l 368 128 368 224 0 0.5 0
c 368 224 368 320 0 3.17E-5 0
r 256 128 368 128 0 100.0
O 368 128 432 128 0
g 368 320 368 352 0
170 256 128 224 128 3 20.0 60.0 5.0 0.5
o 5 64 0 34 5.0 9.765625E-5 0 -1 in
o 3 64 0 34 5.0 9.765625E-5 1 -1 out
o 0 64 0 34 10.0 0.025 2 -1 inductor
o 1 64 0 34 10.0 0.025 2 -1 cap
h 1 0 1


circuit.zip > jfetcurrentsrc.txt

$ 1 5.0E-6 10 58 10.0
g 256 336 256 368 0
w 256 224 256 176 0
w 256 176 304 176 0
w 256 80 304 80 0
R 256 80 256 32 0 0 40.0 10.0 0.0
s 304 80 304 176 0 true false
r 256 80 256 176 0 1500.0
j 208 240 256 240 0
w 208 240 208 336 0
w 208 336 256 336 0
r 256 256 256 336 0 1000.0
o 4 64 0 1 5.0 0.00625


circuit.zip > filt-hipass.txt

$ 1 5.0E-6 6.499443210467817 50 5.0 50
c 240 160 400 160 0 1.0E-5 0
r 400 160 400 288 0 35.0
O 400 160 512 160 0
g 400 288 400 320 0
170 240 160 208 160 3 20.0 1000.0 5.0 0.1
o 4 16 0 34 5.0 9.765625E-5 0 -1 in
o 2 16 0 34 2.5 9.765625E-5 1 -1 out
h 3 1 0


circuit.zip > lrc-critical.txt

$ 1 5.0E-6 10 50 5.0
r 176 80 384 80 0 516.4
s 384 80 448 80 0 true false
w 176 80 176 352 0
c 176 352 384 352 0 1.4999999999999999E-5 -9.860041921625609
l 384 80 384 352 0 1.0 0.03019234785322575
v 448 352 448 80 0 0 40.0 5.0 0.0
r 384 352 448 352 0 100.0
o 4 64 0 3 20.0 0.05
o 3 64 0 3 10.0 0.05
o 0 64 0 3 0.625 0.05
h 1 4 3


circuit.zip > gyrator.txt

$ 1 5.0E-6 10.634267539816555 57 5.0 50
a 368 128 480 128 0 15.0 -15.0 1000000.0
w 480 128 480 80 0
w 480 80 368 80 0
w 368 80 368 112 0
r 368 144 368 240 0 20000.0
r 368 112 272 112 0 1000.0
c 272 144 368 144 0 2.5E-7 -1.9401381307764982
w 272 144 272 128 0
w 272 112 272 128 0
R 272 128 208 128 0 2 20.0 5.0 0.0 0.0 0.5
g 368 240 368 272 0
R 272 320 208 320 0 2 20.0 5.0 0.0 0.0 0.5
l 368 320 368 384 0 5.0 -0.0019401381307769976
g 368 384 368 400 0
r 368 320 272 320 0 1000.0
o 9 64 0 35 9.353610478917778 0.005846006549323612 0 -1
o 11 64 0 35 9.353610478917778 0.005846006549323612 1 -1


circuit.zip > transformerdown.txt

$ 1 5.0E-6 9 47 5.0 30
v 176 272 176 144 2 1 60.0 120.0 0.0
w 352 224 352 272 0
T 272 192 352 192 0 1000.0 0.1 0 0
w 272 192 272 144 1
w 272 224 272 272 0
r 272 144 176 144 0 20.0
w 176 272 272 272 0
w 352 272 448 272 0
w 352 144 448 144 0
r 448 144 448 272 0 300.0
w 352 192 352 144 1
o 0 64 0 3 160.0 0.4 0
o 9 64 0 3 20.0 0.05 1


circuit.zip > ttlnor.txt

$ 1 5.0E-6 10 54 5.0
t 144 192 144 272 0 1 0.5874809043486446 -3.7727363939084873
t 160 272 208 272 0 1 0.602697396937354 0.6397827017428683
L 128 272 64 272 0 false false
r 144 192 144 112 0 4700.0
R 144 112 64 112 0 0 40.0 5.0 0.0
w 144 112 208 112 0
t 304 192 304 272 0 1 0.5908763474738555 0.5911276058707033
t 320 272 368 272 0 1 -0.03683404640866654 2.512583968477912E-4
r 304 112 304 192 0 4700.0
w 208 112 304 112 0
w 304 112 368 112 0
r 368 112 368 192 0 1000.0
w 368 192 432 192 0
M 432 192 480 192 0
L 288 272 240 272 0 true false
r 208 112 208 192 0 1000.0
w 208 192 208 224 0
w 368 192 368 256 0
w 208 224 432 224 0
w 432 224 432 192 0
w 208 224 208 256 0
g 208 288 208 320 0
g 368 288 368 320 0


circuit.zip > grid.txt

$ 17 5.0E-6 2 46 5.0 42
R 272 64 272 16 0
g 272 352 272 384 0
r 176 64 176 112 0 5
r 176 112 176 160 0 5
r 176 160 176 208 0 5
r 176 208 176 256 0 5
r 176 256 176 304 0 5
r 176 304 176 352 0 5
r 224 64 224 112 0 5
r 224 112 224 160 0 5
r 224 160 224 208 0 5
r 224 208 224 256 0 5
r 224 256 224 304 0 5
r 224 304 224 352 0 5
r 272 64 272 112 0 5
r 272 112 272 160 0 5
r 272 160 272 208 0 5
r 272 208 272 256 0 5
r 272 256 272 304 0 5
r 272 304 272 352 0 5
r 320 64 320 112 0 5
r 320 112 320 160 0 5
r 320 160 320 208 0 5
r 320 208 320 256 0 5
r 320 256 320 304 0 5
r 320 304 320 352 0 5
r 368 64 368 112 0 5
r 368 112 368 160 0 5
r 368 160 368 208 0 5
r 368 208 368 256 0 5
r 368 256 368 304 0 5
r 368 304 368 352 0 5
r 176 64 224 64 0 5
r 176 112 224 112 0 5
r 176 160 224 160 0 5
r 176 208 224 208 0 5
r 176 256 224 256 0 5
r 176 304 224 304 0 5
r 176 352 224 352 0 5
r 224 64 272 64 0 5
r 224 112 272 112 0 5
r 224 160 272 160 0 5
r 224 208 272 208 0 5
r 224 256 272 256 0 5
r 224 304 272 304 0 5
r 224 352 272 352 0 5
r 272 64 320 64 0 5
r 272 112 320 112 0 5
r 272 160 320 160 0 5
r 272 208 320 208 0 5
r 272 256 320 256 0 5
r 272 304 320 304 0 5
r 272 352 320 352 0 5
r 320 64 368 64 0 5
r 320 112 368 112 0 5
r 320 160 368 160 0 5
r 320 208 368 208 0 5
r 320 256 368 256 0 5
r 320 304 368 304 0 5
r 320 352 368 352 0 5


circuit.zip > switchfilter.txt

$ 1 1.2E-5 14 57 5.0
f 240 176 176 176 1
f 128 176 176 176 0
r 176 96 176 160 0 50.0
r 304 96 304 160 0 350.0
w 176 192 176 224 0
w 176 224 304 224 0
w 304 192 304 224 0
w 304 96 304 64 0
w 304 64 176 64 0
w 176 64 176 96 0
w 304 224 416 224 0
c 416 224 416 288 0 1.0E-5 0.4780517576155351
g 416 288 416 320 0
O 416 224 480 224 0
w 240 176 240 256 0
I 240 320 240 256 0
w 128 176 128 320 0
w 128 320 240 320 0
w 240 320 352 320 0
L 128 320 80 320 0 true false
v 176 64 112 64 0 1 500.0 1.0 0.0
w 304 64 416 64 0
p 416 64 416 112 0
g 416 112 416 144 0
R 112 64 80 64 0 1 40.0 1.0 2.5
f 240 176 304 176 0
f 352 176 304 176 1
w 352 176 352 320 0
o 22 32 0 2 5.0 2.44140625E-5
o 13 32 0 2 1.25 2.44140625E-5


circuit.zip > ceamp.txt

$ 1 5.0E-6 16 60 15.0 53
w 240 48 336 48 0
r 240 48 240 208 0 110000.0
r 240 208 240 352 0 10000.0
t 240 208 336 208 0 1 -10.980847640834186 0.5689504449104646
w 240 352 336 352 0
g 240 352 240 384 0
R 240 48 144 48 0 0 40.0 20.0 0.0
r 336 48 336 192 0 10000.0
r 336 224 336 352 0 1000.0
c 240 208 160 208 0 4.9999999999999996E-6 1.5542375158881994
R 160 208 112 208 0 1 80.0 0.5 0.0
c 336 192 416 192 0 4.9999999999999996E-6 10.088518798851988
O 416 192 464 192 0
r 416 192 416 272 0 1000000.0
g 416 272 416 304 0
o 10 64 0 2 0.625 9.765625E-5
o 12 64 0 2 10.0 9.765625E-5


circuit.zip > tdiode.txt

$ 1 5.0E-6 10.634267539816555 56 2.0 50
R 320 208 320 160 0 3 50.0 0.28 0.26 0.0 0.5
g 320 288 320 320 0
175 320 208 320 288 0
o 2 32 0 35 0.625 0.0125 0 -1
o 2 64 0 99 0.625 0.0125 1 -1


circuit.zip > ohms.txt

$ 1 5.0E-6 10.391409633455755 50 5.0 50
r 256 176 256 304 0 100.0
172 304 176 304 128 0 6 5.0 5.0 0.0 0.0 0.5 Voltage
g 256 336 256 352 0
w 256 304 256 336 1
r 352 176 352 304 0 1000.0
w 352 304 352 336 1
g 352 336 352 352 0
w 304 176 352 176 0
w 256 176 304 176 0


circuit.zip > multivib-mono.txt

$ 1 5.0E-6 8.6 50 5.0 50
w 192 32 272 32 0
r 192 32 192 160 0 330.0
r 272 32 272 160 0 1020.0
r 432 32 432 160 0 320.0
c 192 160 272 160 0 1.8E-5 4.3449566448532755
w 432 160 432 224 0
t 352 240 432 240 0 1 0.6277842747260773 0.6549145378729839 100.0
w 272 160 352 240 0
w 352 160 272 240 0
t 272 240 192 240 0 1 -4.972740919574546 0.027130263151713234 100.0
w 192 160 192 224 0
r 352 160 432 160 0 100.0
t 128 240 192 240 0 1 -4.901331660083208 0.09853952264305138 100.0
w 128 32 192 32 0
r 128 32 128 144 0 100.0
s 128 144 128 240 0 1 true
w 272 32 432 32 0
R 128 32 64 32 0 0 40.0 5.0 0.0 0.0 0.5
g 192 256 192 304 0
g 432 256 432 304 0
x 444 247 466 251 0 16 Q1
o 6 64 6 35 2.5 9.765625E-5 0 -1


circuit.zip > cmosmsff.txt

$ 0 5.0E-6 9 50 5.0 50
159 144 112 208 112 0
w 208 112 208 192 0
159 208 192 272 192 0
I 208 112 272 112 0 2.0E-4
I 272 112 272 192 0 2.0E-4
159 272 112 336 112 0
159 336 192 400 192 0
w 336 112 336 192 0
I 336 112 400 112 0 2.0E-4
I 400 112 400 192 0 2.0E-4
I 400 112 464 112 0 0.5
I 400 192 464 192 0 0.5
w 176 128 176 336 0
w 240 208 240 240 0
w 368 240 368 208 0
I 240 336 240 240 0 0.5
w 176 336 240 336 0
w 240 336 368 336 0
w 240 240 304 240 0
w 304 240 304 128 0
w 368 240 368 336 0
R 176 336 80 336 1 2 100.0 2.5 2.5
L 144 112 80 112 0 true false 5.0 0.0
M 464 112 512 112 0 2.5
M 464 192 512 192 0 2.5
x 71 80 87 80 0 24 D
x 543 122 559 122 2 24 Q
x 542 202 558 202 0 24 Q


circuit.zip > twint.txt

$ 1 5.0E-6 10.391409633455755 50 5.0 50
r 192 112 304 112 0 100.0
r 304 112 416 112 0 100.0
c 192 272 304 272 0 2.6524999999999998E-5 0
c 304 272 416 272 0 2.6524999999999998E-5 0
c 304 112 304 176 0 5.3049999999999995E-5 0
g 304 176 304 208 0
r 304 272 304 336 0 50.0
g 304 336 304 368 0
w 416 112 416 192 0
w 416 192 416 272 0
w 192 112 192 192 0
w 192 192 192 272 0
O 416 192 480 192 0
170 192 192 144 192 3 40.0 80.0 5.0 0.5
o 13 32 0 34 5.0 0.025 0 -1
o 12 32 0 34 5.0 9.765625E-5 1 -1


circuit.zip > mr-triangle.txt

$ 1 5.0E-8 9.78399845368213 72 1.0 50
g 320 304 320 320 0
m 320 192 320 304 0 100.0 16000.0 0 1.0E-8 1.0E-10
R 320 192 320 160 0 3 3200.0 1.0 0.0 0.0 0.5
o 1 64 0 35 1.25 9.765625E-5 0 -1
o 1 64 2 35 20480.0 9.765625E-5 1 -1
o 1 64 0 99 1.25 9.765625E-5 2 -1


circuit.zip > 555missing.txt

$ 1 5.0E-6 10.391409633455755 56 5.0 50
165 336 176 448 176 0 5.0
w 336 208 336 304 0
w 336 208 304 208 0
w 304 208 304 304 0
c 304 304 304 368 0 9.999999999999999E-6 -0.21686387276521343
g 304 368 304 384 0
r 304 208 304 144 0 1000.0
w 304 144 400 144 0
O 464 240 528 240 0
82 304 144 304 96 0 0 40.0 5.0 0.0 0.0 0.5
t 208 336 256 336 0 -1 0.0 0.21686387276521343
w 256 320 256 304 0
r 256 304 304 304 0 100
w 256 352 256 368 0
w 256 368 304 368 0
w 208 272 208 336 0
152 96 272 208 272 0 2 0.0
82 96 288 96 336 0 2 60.0 2.5 2.5 0.0 0.5
L 96 256 96 208 0 true false 5.0 0.0
w 208 272 336 272 0
o 19 64 0 6 5.0 9.765625E-5 0 input
o 8 64 0 6 5.0 9.765625E-5 0 output


circuit.zip > cmosxor.txt

$ 0 5.0E-6 10 50 5.0
f 192 128 256 128 5
f 192 224 256 224 4
w 256 144 256 176 0
w 256 176 256 208 0
w 192 128 192 176 0
w 192 176 192 224 0
f 336 112 336 176 5
f 336 240 336 176 4
w 256 240 336 240 0
w 256 112 336 112 0
w 192 176 144 176 0
w 144 176 144 272 0
w 144 272 384 272 0
w 384 272 384 176 0
w 336 112 336 80 0
w 336 80 144 80 0
L 144 80 64 80 0 true false
L 144 176 64 176 0 true false
w 336 240 432 240 0
I 432 80 432 240 0
w 336 80 432 80 0
w 256 176 288 176 0
w 288 176 320 176 0
w 288 176 288 304 0
M 288 304 288 352 0
w 352 176 384 176 0
x 199 361 215 361 0 20 output


circuit.zip > moscurrentsrc.txt

$ 1 5.0E-6 11.708435524800691 50 10.0 50
f 352 288 400 288 0 1.5
w 400 304 400 352 1
g 400 352 400 384 0
R 400 112 400 80 0 0 40.0 10.0 0.0 0.0 0.5
w 400 272 400 240 0
r 400 112 400 240 0 300.0
w 400 112 448 112 0
w 400 240 448 240 0
s 448 112 448 240 0 1 false
R 352 288 320 288 0 0 40.0 3.0 0.0 0.0 0.5


circuit.zip > ccitov.txt

$ 1 5.0E-6 10.20027730826997 59 5.0 50
S 224 320 224 240 0 1 false 0
S 224 160 224 240 0 1 false 0
w 144 160 144 240 0
w 144 240 144 320 0
r 144 240 208 240 0 1000.0
i 144 160 224 160 0 0.0010
i 144 320 224 320 0 0.0020
O 304 176 304 80 1
w 240 240 304 240 1
r 304 240 304 320 0 1000.0
g 304 320 304 336 0
179 304 176 368 176 0 1.0
g 400 208 400 288 0
R 144 240 96 240 0 0 40.0 5.0 0.0 0.0 0.5
o 8 64 0 33 2.5 0.003125 0 -1
o 7 64 0 34 5.0 9.765625E-5 1 -1


circuit.zip > e-dram.html

Dynamic RAM





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a very simple model
of dynamic RAM ,
with a capacity of four bits. There is only one column, with
four rows.

Select which bit you want with the two inputs labeled " row select " . The output is
on the right. To write a bit, specify the bit you want to write with the " data " input
and then click the " write " input. This will charge (or discharge) the appropriate
capacitor.

The capacitors will slowly drain over time, so each row must be refreshed periodically.
To do this, select the row and click the " refresh " input.



Next: 555 Square Wave Generator
Previous: Traffic Light
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-follower.html

Emitter Follower





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is
an emitter follower or buffer
amplifier circuit, where the output is simply equal to the input minus a diode drop
(about 700mV). The advantage of this circuit is that the transistor can provide current
and power gain; the transistor draws little current from the input. It
provides low output
impedance to any circuit using the output of the follower,
meaning that the output will not drop under load.

The capacitor and the 800 ohm resistors bias the transistor's base at 2.5 V, so that the
average value of the input is moved up to that level. The base-emitter junction acts like
a diode, so that the emitter will be a diode drop lower than the base. The collector
current will be 100 times the base current, so that any current drawn by the load will be
provided by the power supply through the collector, not by the input through the base.


Next: Common-Emitter Amplifier
Previous: Switch
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-phaseoscfilt.html

Phase-Shift Oscillator Filter




Sorry, you need a Java-enabled browser to see the simulation.







This shows the filter from the phase-shift
oscillator showing
the 180 degree shift at the oscillation frequency (about 130 Hz).


Next: Negative Impedance Converter
Previous: Phase-Shift Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-3-invert.html

Ternary Logic Inverter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an example of a ternary logic gate,
implemented using
MOSFET s that have
the indicated
threshold voltages . This
gate's input has three states: 0 (ground), 1 (2.5 V), and 2 (5 V). This is an inverter;
if the input is X, the output is 2-X.

When the input is 2, the n-MOSFET at lower right pulls the output to ground (the
MOSFET switches on whenever the gate voltage is 3.25 V or above). When
the input is 0, this MOSFET switches off, and the p-MOSFET on top pulls the output
to 5 V (the MOSFET switches on whenever the gate voltage is below 5 V-3.25 V, or
1.75 V). When the input is 1, both the MOSFETs on the right are off, but the two
MOSFETs on the left switch on, pulling the output to 2.5 V.



Next: NPN Transistor (Bipolar)
Previous: CMOS Master-Slave Flip-Flop
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-traffic.html

Traffic Light





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







A simple light circuit that uses a decade counter to drive two traffic lights. The 555 timer
chip provides the clock.


Next: Dynamic RAM
Previous: Divide-by-3
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-555pulsemod.html

555 Pulse Width Modulator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit encodes a voltage with
pulse-width
modulation using a
555 timer
chip . The width of the output pulses varies depending on
a control voltage.

The width of the pulses is set by a triangle wave oscillator connected
to the " ctl " input of the 555. The rest of the circuit is just like
the square wave oscillator . By
applying a voltage to the " ctl " input (normally 2/3 V in ),
we can control the voltage
which ends a timing interval. When the " th " input reaches this
value, the output goes low. So the 555 will oscillate faster when the
ctl input is lower.


Next: 555 Schmitt Trigger (inverting)
Previous: 555 Pulse Sequencer
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-triangle.html

Triangle Wave Generator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is
an oscillator
that generates a triangle wave .

The second half of the circuit is an inverting
integrator . The first op-amp
starts with its two inputs in an unknown state; let's say it starts
with + slightly higher than & ndash; (which is at ground). The op-amp greatly amplifies
this difference, bringing its output to the op-amp's
positive power supply voltage, its maximum output (15 V in this
case). With this positive input, the integrator's output falls at a
constant rate.

The 10k and 4k resistors act as a voltage divider which put the
first op-amp's + input 4/14ths of the way from the second op-amp's output to the first
op-amp's output. When this input reaches ground, then the first op-amp's
output switches polarity, and the integrator switches direction,
forming the other half of the triangle. When the first op-amp
switches polarity again, a new cycle begins.


Next: Sawtooth Wave Generator
Previous: Relaxation Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-leadingedge.html

Leading-Edge Detector





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example uses four CMOS inverters (two buffers)
and a high-pass
filter to form a leading edge detector. When the input makes a positive transition,
the output goes high briefly and then goes back to low.


Next: Switchable Filter
Previous: Delayed Buffer
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mr-sine.html

Memristor Response to Sine Wave





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows a memristor 's
response to a sine wave. The graphs below the circuit show the memristor's voltage
(in green), current (in yellow), and resistance (in white). A graph of voltage versus
current is also shown. Note that the voltage has a nonlinear relationship to current.


Next: Memristor Response to Square Wave
Previous: Memristor
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amp-fullrect.html

Full-Wave Rectifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a
full-wave rectifier ,
superior to the simple diode version because
there is no 700 mV diode drop.

The lower left op-amp
attempts to keep its & ndash; input at the same voltage as the + input
(which is at ground). When the input signal is negative, the op-amp output goes
positive to keep the & ndash; input at ground. The 500 ohm resistor
has no current flowing through it, because both ends are at ground,
so it can be ignored. The second op-amp
and two 1k resistors act
as a unity-gain inverting amplifier to
make the output equal to the
input, only positive.

When the input signal is positive, both op-amps attempt to keep their & ndash;
input at ground. In order to do this, all four resistors on the left must have a
voltage drop equal to the input signal. The 500 ohm resistor must have
twice as much current flowing through it as the 1k resistor to
its upper left (because it has the same voltage drop but half the
resistance), so the upper right resistor must make up the difference.
This requires the ciruit's output to be at the same level as the input
signal, with the same polarity.

So the output voltage is always positive but has the same
magnitude as the input voltage.


Next: Peak Detector
Previous: Half-Wave Rectifier (inverting)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-dcrestoration.html

DC Restoration





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses a diode to take an AC input signal and shift it so
that it is (mostly) positive voltage.


Next: Blocking Inductive Kickback
Previous: Zener Voltage Reference w/ Follower
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-inductkick-snub.html

Blocking Inductive Kickback





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows how inductive
kickback can be blocked with a " snubber " circuit.


Next: Power Factor
Previous: Inductive Kickback
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-filt-hipass.html

High-Pass Filter (RC)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a high-pass
filter implemented using a resistor and a capacitor. A
high-pass filter passes
higher frequencies and attenuates lower
frequencies. The
input frequency keeps changing, sweeping up and down the
spectrum to demonstrate the change in response.
The capacitor passes higher frequencies, causing the output voltage to
fluctuate more. Lower frequencies are blocked, and there is
reduced current across the resistor, keeping the
output voltage closer to ground.
The breakpoint (-3 dB point) is
shown at the lower right, as " f.3db " .


Next: High-Pass Filter response (RC)
Previous: Parallel Resonance
Analog Filter Applet
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-samplenhold.html

Sample-and-Hold





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example uses a transmission
gate to form a sample
and hold circuit. When the sample input is high, the output is the same as the
input. When the sample input is low, the output is held constant.


Next: Delayed Buffer
Previous: CMOS Multiplexer
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-norton.html

Norton's Theorem





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







These circuits demonstrate Norton's
theorem , which states that any combination of voltage sources, current sources, and resistors can
be reduced to a single current source and a single resistor. So, the scary-looking circuit on top can
be reduced to the equivalent circuit on the bottom.


Next: A/C Response of Capacitor
Previous: Thevenin's Theorem
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-capmultfreq.html

Caps w/ Various Frequencies





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







Here are three circuits which are identical except for the frequency of the source. Capacitors
are able to " pass " higher frequencies more easily than lower ones. The higher frequency of the
bottom circuit results in a higher current. This is because the voltage across a capacitor
is proportional to the charge stored in it, and charge is the accumulation of current over time. With
a shorter A/C cycle, a higher current can flow for a shorter period of time and still result in the
same peak charge (and thus the same peak voltage).


Next: Inductors of Various Inductances
Previous: Caps of Various Capacitances
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > ex-555.html

This document has moved
here .


circuit.zip > e-filt-lopass-l.html

Low-Pass Filter (RL)




Sorry, you need a Java-enabled browser to see the simulation.







This is a low-pass
filter implemented using a resistor and an inductor. The
inductor passes lower frequencies, causing the output voltage to
fluctuate more. Higher frequencies are blocked, and there is
reduced current across the resistor, keeping the
output voltage closer to ground.

Below the circuit is the frequency response in
dB for a range
of frequencies. You can click on the frequency response graph to see
the circuit in operation at that particular frequency.


Next: Band-Pass Filter
Previous: High-Pass Filter (RL)
Analog Filter Applet
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-powerfactor1.html

Power Factor





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows an
inductor being driven by an AC voltage. & nbsp; The colors indicate power consumption; red means that
a component is consuming power, and green means that the component is
contributing power. & nbsp; The left
side of the circuit represents the power company's side, and the right side
represents a factory (with a large induction motor).

The highly inductive load is causing the power company to work a lot
harder than normal for a given amount of power delivered. & nbsp; The graph on the left indicates the power lost in the power
company's equipment (the resistor at top left). & nbsp; The graph in the middle is the power delivered to the
factory. & nbsp; The graph on the
right is the power delivered to the inductor (and then returned, causing
the time average of power delivered to be zero).

Even though a peak power of 40 mW is being delivered to the factory, 200
mW is being dissipated in the power company's wires. This can
happen whenever power
factor is less than 1, and power companies usually charge
extra when this happens.


Next: Power Factor Correction
Previous: Blocking Inductive Kickback
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-sine.html

Sine Wave Generator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit generates a sine wave
and a cosine wave. It combines two
integrators . Since the integral of a
sine is a negative cosine, and the integral of a cosine is a sine, we
can generate both waves by feeding the output of each integrator into
the input of the other.


Next: Voltage-Controlled Oscillator
Previous: Sawtooth Wave Generator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mux.html

CMOS Multiplexer





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses two transmission
gates to form a multiplexer .
It connects one of two inputs to the output, depending on the select input.


Next: Sample-and-Hold
Previous: CMOS Transmission Gate
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-sawtooth.html

Sawtooth Wave Generator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is
an oscillator
that generates a sawtooth wave . It's basically the same circuit as
the triangle wave oscillator , except
that the resistor in series with the capacitor has been replaced by
two resistors, each paired with a diode going in opposite directions.
For the first half of the cycle, the capacitor charges through a 40k
resistor, and for the other half, it quickly discharges through a
5k resistor.


Next: Sine Wave Generator
Previous: Triangle Wave Generator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-555sequencer.html

555 Pulse Sequencer





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







A pulse
sequencer outputs three pulses, one after another, on three
different lines, once the input is brought low. It's just three
monostables connected in sequence.


Next: 555 Pulse Width Modulator
Previous: 555 Monostable Multivibrator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amp-dfdx.html

Differentiator (inverting)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit calculates the derivative of the input, meaning that the
output voltage is proportional to the (negative) rate of change of the input voltage.

The voltage across the capacitor is proportional
to the charge stored in it (the integral of the current). The op-amp
attempts to keep its & ndash; input at the same voltage as the + input
(which is at ground), so the voltage drop across the capacitor must always
be equal to the input voltage. This requires the op-amp to have a negative
voltage when the input voltage is rising (to drain the capacitor to compensate),
and a positive voltage when the input voltage is falling. If the
input voltage changes too fast, the op-amp will hit its upper or lower
limit and so it won't be able to keep the & ndash; input at ground all
the time.


Next: Schmitt Trigger
Previous: Integrator (inverting)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-classd.html

Class-D Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a Class D
or switching amplifier
circuit. It amplifies the 30 Hz signal to the upper left. First, it compares
the input to a high-frequency triangle wave , using a
op-amp
as a comparator. It uses the output of the comparators to drive two
MOSFET s which bring their
output to +15 V if the output is higher than the triangle wave, or -15
V if it's lower. Since the triangle wave sweeps up and down at high
frequency, we get a series of spikes, which are higher on average when
the input is higher. An LC filter
smoothes out the spikes to generate the amplified output.



Next: Half-Wave Rectifier (inverting)
Previous: Log Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-ladder.html

LC Ladder





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This
circuit is a simple model of a transmission line. & nbsp; A pulse propagates down the length of the ladder like a
wave. & nbsp; The resistor at the end has
a value equal to the characteristic impedance of the ladder (determined by the
ratio of L to C), which causes the wave to be absorbed. & nbsp; A larger resistance or an open circuit
will cause the wave to be reflected; a smaller resistance or a short will cause
the wave to be reflected negatively. & nbsp; See the Feynman
Lectures 22-6, 7.



Next: Phase-Sequence Network
Previous: Power Factor Correction
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-currentsrcramp.html

Current Source Ramp





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses a current source to
generate a voltage ramp whenever the switch is closed.


Next: Current Mirror
Previous: Current Source
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amp-rect.html

Half-Wave Rectifier (inverting)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an inverting
half-wave rectifier ,
superior to the simple diode version because
there is no 700 mV diode drop. Even though the input signal only
swings 500 mV, it can still be rectified.

The op-amp
attempts to keep its & ndash; input at the same voltage as the + input
(which is at ground).
When the input signal is positive, the op-amp output goes negative to
keep the & ndash; input at ground. No current flows through the upper
resistor or diode, so the output of the circuit is at ground. When the input signal
is negative, the op-amp output goes positive, and current flows
through the upper resistor and diode to bring the & ndash; input to
ground. The two 10k resistors act as a voltage divider, with one end
at the input, the other at the output, and the middle at ground, so
the output must be the negative of the input.


Next: Full-Wave Rectifier
Previous: Class-D Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-555int.html

555 Internals





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows the (simplified) internals of a
555 timer chip . As in
the last example , it is doing a square wave .

A voltage divider sets the inputs of the two op-amps (used as comparators).
The upper op-amp compares the trigger input to 1/3 the supply voltage. The
lower op-amp compares the threshold input to 2/3 the supply voltage.

A timing interval starts when the trigger input goes low enough to trigger
the upper op-amp. That sets the
flip-flop , causing the output
to go high. The 555 waits for the threshold input to trigger the lower
op-amp. As the capacitor charges, the threshold
input slowly rises until it reaches the required level. Then, the op-amp
resets the flip-flop, bringing the output low. The flip-flop's inverted
output also provides current to the base of the transistor on the bottom,
which discharges the capacitor through the discharge input.

When the capacitor is discharged enough so that the upper op-amp is
triggered again, a new timing interval begins.


Next: 555 Sawtooth Oscillator
Previous: 555 Square Wave Generator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-555lowduty.html

555 Low-duty-cycle Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple
oscillator
using a
555 timer chip . It
is similar to the square wave example , but has a
very short duty cycle .

A timing interval starts when the trigger input ( " tr " ) goes lower than 1/3
V in , or 3.33V. When this happens,
the 555 output goes high. This causes the capacitor to be quickly charged
through the diode until it reaches 6.67V. Then, the timing
interval ends, the output goes low, and the capacitor is discharged through
the " dis " input.

When the capacitor is discharged enough so that the trigger reaches 3.33V,
then a new timing interval begins. The end result is a series of short
pulses.


Next: 555 Monostable Multivibrator
Previous: 555 Sawtooth Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-johnsonctr.html

Johnson Counter / Decade Counter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a 5-bit Johnson counter
used to implement a decade counter . The ring of 5 D flip-flops is the Johnson counter; their output
is shown on the bottom. The Johnson counter output
is used to generate 10 outputs; each output goes high in turn.


Next: Divide-by-2
Previous: Gray Code Counter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-indseries.html

Inductors in Series





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This demonstrates that the inductance of two
inductors in series is
equal to the sum of the two separate inductances.


Next: Inductors in Parallel
Previous: Voltage Divider
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tllopass.html

Low-Pass Filter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows a low-pass filter made out of a series of transmission lines of varying
lengths and impedances. The input
source sweeps through a range of frequencies to show the response. High frequencies
are cut off above 4 Ghz or so.


Next: Light Switch
Previous: Stub Frequency Response
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tesla.html

Tesla Coil





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a tesla
coil
circuit. A transformer steps the input voltage up 100x to create a high
voltage. After a few seconds, the voltage is high enough to fire the
spark gap. The capacitor and the primary coil of the second transformer
then form a resonant circuit. The secondary transformer coil is attached
to a toroid, represented here by a capacitor connected to ground. It
also forms a resonant circuit with the same resonant frequency, about 200kHz
The energy is gradually
transferred from the first circuit to the second , and then the
spark gap stops conducting, leaving all the energy in the toroid circuit.

Once the spark gap stops conducting, it takes a while for the voltage to
build up enough for it to fire again. The simulation speed is slowed down
quite a bit so that the 200kHz oscillations can be seen.
You might want to reload the circuit
instead of waiting.


Next: Marx Generator
Previous: Sawtooth Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > ex-multivib.html

This document has moved
here .


circuit.zip > e-diodevar.html

Diode





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple demonstration of a diode .
With a resistor, current and voltage are proportional (by Ohm's Law). With a
diode, current and voltage have an exponential relationship.

Current flows from the supply voltage through the diode to ground.
The supply voltage can be
controlled using the " Voltage " slider to the right. Basically no
current will slow if the supply is negative (if the diode is
reverse-biased). If the diode is forward-based, very little
current flows if the supply is less than 0.6V. As the voltage
increases beyond that, the current increases exponentially.


Next: Diode I/V Curve
Previous: Phase-Sequence Network
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-ohms.html

Ohm's Law





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a java applet showing a simple demonstration of
Ohm's Law . The green
color indicates positive voltage ,
and the gray color indicates
ground
(or earth) . The movement of yellow dots
indicates current
(in the conventional direction ).
Current flows from a positive voltage source through one of two
resistors
to ground. The amount of resistance in ohms
is shown to the right of each resistor. The voltage can be controlled
using the " Voltage " slider at right.

By Ohm's Law ,
the current through each resistor will be equal to the voltage divided by the resistance. The
resistor at right has 10 times as much resistance, so it will have 1/10th the current.


Next: Resistors
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-nmosfet.html

n-MOSFET





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple model of a n-type MOSFET . The source is at ground, and the
gate and drain voltages can be controlled using the sliders at the right.

Basically no current flows if the gate voltage is below the threshold voltage
(1.5 V). When you raise it above that, current begins to flow.

When the gate and drain voltages are sufficiently high, the MOSFET is in saturation, and
the current is constant regardless of the drain voltage. If you lower the drain
voltage enough relative to the gate, then the MOSFET is in linear mode, and the current
is roughly linear to the drain voltage. By sliding the drain voltage slider slowly
back and forth, you should be able to see the boundary between the linear and
saturation regions. Try this with different settings for the gate voltage.


Next: p-MOSFET
Previous: Voltage Regulator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-thevenin.html

Thevenin's Theorem





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







These circuits demonstrate Th & eacute;venin's
theorem , which states that any combination of voltage sources, current sources, and resistors can
be reduced to a single voltage source and a single resistor. So, the scary-looking circuit on top can
be reduced to the equivalent circuit on the bottom.


Next: Norton's Theorem
Previous: Capacitors in Parallel
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tllight.html

Light Switch





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple light switch circuit where the wires are treated as transmission
lines. When you hit the switch, it takes a while for the light and the source
to get the message. Of course, in real life, it takes more than a nanosecond
to flip a switch.



Next: Memristor
Previous: Low-Pass Filter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tlmatch1.html

Impedance Matching (L-Section)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an example of
impedance matching .
Two transmission
lines with different
characteristic impedances are matched with an inductor and a capacitor,
eliminating standing waves in the first line. On the bottom you see the same
two lines without impedance matching. The power delivered to the load is graphed
for both cases on the bottom. With impedance matching, more power is delivered to
the load.


Next: Impedance Matching (Shunt Stub)
Previous: Mismatched transmission lines (Standing Wave)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-halfadd.html

Half Adder





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a half adder ,
which adds two binary numbers and
produces a two-digit binary result.


Next: Full Adder
Previous: Exclusive OR
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-ttlnand.html

TTL NAND





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an NAND gate
implemented using transistor-transistor
logic . Click on the
inputs on the left to toggle their state. When all of the inputs are high,
the output is low; otherwise, the output is high.

When both inputs are high, the two transistors on the left are in reverse active
state. A current flows through the 4.7k resistor through the base and collector
of these transistors, and then through the base of the transistor on the right,
saturating it and bringing the output down near ground.

When both inputs are low, the easiest path to ground through the 4.7k resistor
is through the base of the transistors on the left to the inputs. This brings
their collector voltages low enough so that very little current can flow through
the base of the transistor on the right. This keeps that transistor off,
bringing the output up to 5 V.

When only one of the inputs is low, that input provides the easiest path to ground,
through its corresponding transistor. This keeps the transistor on the right
switched off.


Next: TTL NOR
Previous: DTL NAND
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-pnp.html

PNP Transistor (Bipolar)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a demonstration of an PNP
transistor . The emitter
is at +2V, and the base and collector voltages can be controlled using the sliders at right.
Move the mouse over the transistor to see labels for the three
terminals. Compare it to the NPN example.

The emitter-base junction acts like a diode .
Unlike an NPN transistor, current flows out of the base, not into it.
Little current flows out of the base unless it is below about 1.4V (0.6V below the
emitter). Assuming the collector is at a
lower voltage than the base, the emitter-collector current is 100 times the base current.
So, this transistor has a beta (current gain) of 100.
Moving the collector voltage higher or lower won't have any effect as long as it's lower
than the base voltage. This is forward active mode.

A transistor is often considered to be in saturation mode when the
collector is higher than the
base. But it still acts like forward active mode unless the voltage difference, V cb ,
is on the order of a diode drop (.6 V). If the base is at 1.3V and the collector is raised
to about 1.86V or higher, the base current will go up and the collector current will go down,
so it will no longer be 100 times the base current. This is saturation, where the transistor
acts like a low-resistance switch, with a small voltage drop from the
emitter to the collector.


Next: Switch
Previous: NPN Transistor (Bipolar)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mr-sine3.html

Memristor Hard-Switching 2





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows a memristor 's
response to a sine wave. The graphs below the circuit show the memristor's voltage
(in green), current (in yellow), and resistance (in white). A graph of voltage versus
current is also shown. In this case, the voltage swings are large enough (relative to time)
that the memristor hits its minimum and maximum resistance values, causing spikes in current.



Next: Tunnel Diode I/V Curve
Previous: Memristor Hard-Switching 1
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-pmosfet.html

p-MOSFET





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple model of a p-type MOSFET . The source is at 5 V, and the
gate and drain voltages can be controlled using the sliders at the right.

Basically no current flows unless the gate voltage is lower than the source
voltage by at least 1.5 V. (Threshold = -1.5 V) So if you have the gate lower
than 3.5 V, current flows; otherwise not.

When the gate and drain voltages are sufficiently low, the MOSFET is in saturation, and
the current is constant regardless of the drain voltage. If you raise the drain
voltage enough relative to the gate, then the MOSFET is in linear mode, and the current
is roughly linear to the source-drain voltage difference. By sliding the
drain voltage slider slowly
back and forth, you should be able to see the boundary between the linear and
saturation regions. Try this with different settings for the gate voltage.


Next: Switch
Previous: n-MOSFET
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-impedance.html

Impedances of Same Magnitude





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







These three circuits have the same AC source driving three different
impedances . The
impedance has the same magnitude in each case, but different phases.
In the middle case, the impedance is purely resistive and has no
reactance . In
the other two cases (with an inductor and a capacitor) there is some
reactance present, so the phase of the current is different. In all three
cases, the peak value of the current is the same (25 mA).


Next: Series Resonance
Previous: Inductors w/ Various Frequencies
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-capmult.html

Capacitance Multiplier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







The circuit on top uses an op-amp and a small capacitor to simulate a
much larger capacitor. It simulates the circuit on the bottom; the
resistor R2 is the same size as the resistor in the circuit being
simulated (R3), but the capacitor C1 is 100 times smaller than C2.

Current flows from the input source through R1 to the capacitor (C1).
Since R1 is 100 times larger than R2, there is 1/100th the current
through it into the capacitor. For a given input voltage, the rate of
change in voltage in C1 is the same as in C2, because C2 has 100 times the
capacitance to make up for 1/100th the current.

So the voltages across the two capacitors are the same, but the currents
are not. The op-amp causes the & ndash; input to be held at the same voltage
as the voltage across C1. This means R2 has the same voltage across it as
R3, and therefore the same current.


Next: Howland Current Source
Previous: Gyrator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-trans-diffamp-common.html

Differential Amplifier: Common-Mode Input





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a differential
amplifier built using two transistors. The
output is equal to the voltage difference between the two inputs.
This is the common-mode case, where both inputs are the same.

The common-mode change in output is much less than in differential
mode. But as shown here, the output still fluctuates more than we'd
like. This can be improved using a current source .


Next: Differential Amplifier: Common-Mode w/Current Source
Previous: Differential Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-ceamp.html

Common-Emitter Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a common-emitter
amplifier, which amplifies the input voltage about 10 times.

The capacitor and the 110k and 10k resistors bias the transistor's base at about 1.7 V, so that the
average value of the input is moved up to that level. The base-emitter junction acts like
a diode, so that the emitter will be a diode drop lower than the base. Since the transistor
stays in forward-active mode, the collector current will be 100 times the base current.

The emitter voltage fluctuates with the input voltage, and so the current across the 1k
resistor fluctuates proportionately. Since the collector resistor has the same current
across it but has 10 times the resistance, the collector voltage swings 10 times as much (and
with phase opposite to the input).

Note that the peak value of the output is not 5 V as this analysis would predict.
The actual gain is more like 9.5 times for various reasons. For example, the base-emitter
drop is not constant, but varies with the base current.


Next: Unity-Gain Phase Splitter
Previous: Emitter Follower
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amp-invert.html

Inverting Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit inverts and amplifies the input, multiplying the voltage by -3, using an
op-amp .
When connected in a negative feedback configuration,
the op-amp attempts to keep its two inputs at the same voltage.
One is at ground, so for the other one to be at ground, there must
be a voltage drop across the 1k resistor equal to the input
voltage. The 3k resistor has the same current across it, so the
voltage drop must be 3 times as large, by
Ohm's Law , making
the output equal to -3 times the input voltage.


Next: Noninverting Amplifier
Previous: Op-Amp Feedback
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-resistors.html

Resistors





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a java applet showing a simple resistive circuit. The green
color indicates positive voltage ,
and the gray color indicates
ground
(or earth) . The movement of yellow dots
indicates current
(in the conventional direction ). The
left side of the circuit shows a voltage
source providing 5 volts, and the current flows through a number of
switches and resistors to the right. The amount of resistance in ohms
is shown to the right of each resistor .

To turn a switch on or off, just click on it. If you move the mouse over any
component of the circuit, you
will see a short description of that component and its current state in the
lower right corner of the window.

If there is only one switch closed on top and one closed on the
bottom, then there is a single path through the circuit,
and by Ohm's Law ,
the current will be equal to 5V divided by the total resistance
through the current path.

If there are multiple current paths, you may
have resistors
in parallel .

Next: Capacitor
Previous: Ohm's Law
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-transformerup.html

Step-Up Transformer





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







Here we have a transformer with 10 times as many windings in the
secondary (on the right) than in the primary (on the left). As a
result, the voltage in the secondary is 10 times the primary
voltage. (It's not exactly 100V because of resistance in the primary
and imperfect coupling between the two windings.)

If the secondary
were shorted (the resistor replaced with a wire), the primary current
would be much greater, and the secondary current would be 1/10th of the primary current.


Next: Step-Down Transformer
Previous: Transformer
Index












java@ falstad.com
Generated Sat Nov 15 2014



circuit.zip > e-capseries.html

Capacitors in Series





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This demonstrates that the capacitance of two capacitors in series is
equal to the reciprocal of the sum of the reciprocals of the
separate capacitances.


Next: Capacitors in Parallel
Previous: Inductors in Parallel
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-spikegen.html

Spike Generator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses a differentiator and a
diode to generate positive voltage spikes.


Next: Voltage Doubler
Previous: Blocking Inductive Kickback
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-zeneriv.html

Zener I/V Curve





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows a Zener diode ,
a diode that allows current flow in the reverse direction as well as forward. Here, the graph
at lower left shows voltage plotted versus current. Current flows in the forward direction at
about 800 mV, and in the reverse direction at about -5.6 V.


Next: Zener Voltage Reference
Previous: Diode Limiter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-trans-diffamp.html

Differential Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a differential
amplifier built using two transistors. The
output is equal to the voltage difference between the two inputs.
Input 1 is a 40Hz signal, and input 2 is a 40Hz signal with a 200 Hz
signal added in. (In
this simulation, the two signals are added simply by connecting the two
sources in series, which is convenient but not realistic.)
The output is the 200Hz signal.

The two inputs are connected to the bases of the two transistors. The
emitter of each is a diode drop lower than the base.

In the differential-mode case, when input 1 rises and input 2 falls by the
same amount,
there is more voltage
across the left 1k resistor, and so more current. There is less
voltage/current across the right 1k. It adds up to the same
voltage and current through the 75k. The reduced current through the right
transistor causes the output to rise. When input 1 falls and input 2
rises, the output falls.

In the common-mode case, when input 1 and input 2 rise together,
that means more voltage/current across
both 1k's, which means more voltage/current across the 75k as well.
But the 75k is a large resistor, and so a small increase in current
produces a large increase in voltage. So the change in current through the
right transistor (and the voltage change in output)
is much less in common mode than in differential mode.


Next: Differential Amplifier: Common-Mode Input
Previous: Current Mirror
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-currentsrcelm.html

Current Source





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows
a current
source , a device that provides whatever voltage is required to
keep a constant amount of current flowing. Current sources can be
built using transistors .


Next: Transformer
Previous: Critically Damped RLC
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-clockedsrff.html

Clocked SR Flip-Flop





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a clocked set-reset
flip-flop . The output
only changes when the clock input is high.


Next: Master-Slave Flip-Flop
Previous: SR Flip-Flop
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-diodelimit.html

Diode Limiter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







A simple circuit that uses two diodes to prevent the output from swinging
more than 700 mV or so (the " diode drop " ).


Next: Zener I/V Curve
Previous: Full-Wave Rectifier w/ Filter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > ex-555mono.html

This document has moved
here .


circuit.zip > e-wheatstone.html

Wheatstone Bridge





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows a Wheatstone
Bridge , a circuit that can be used to measure resistance. Here,
the bridge is balanced, so there is no current flowing in the central
wire. Typically, one of the resistances is unknown, and the other
resistances are adjusted until the bridge is balanced. The unknown
resistance can then be calculated from the others.


Next: Critically Damped RLC
Previous: Differentiator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-ttlnor.html

TTL NOR





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an NOR gate
implemented using transistor-transistor
logic . Click on the
inputs on the bottom to toggle their state. When one of the inputs is high,
the output is low; otherwise, the output is high.

When one of the inputs is low, the easiest path to ground through the corresponding
4.7k resistor
is through the base of the transistor below it and to the input.
This brings the transistor's collector voltage low enough so that
very little current can flow through
the base of the transistor on the right. This keeps that transistor off. If both
inputs are low, both transistors connected to the output are off, and
the output stays at 5 V.

When one of the inputs is high, the transistor to the right of it is in reverse active
state. A current flows through the 4.7k resistor through the base and collector
of these transistors, and then through the base of the transistor on the right,
saturating it and bringing the output down near ground.


Next: ECL NOR/OR
Previous: TTL NAND
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-deccounter.html

Decimal Counter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a 4-bit decimal counter. It counts up to 9 (1001, in binary) and then
starts again at 0.


Next: Gray Code Counter
Previous: Synchronous Counter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amp-integ.html

Integrator (inverting)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit calculates the integral of the input, meaning that the
output voltage changes at a rate proportional to the
input voltage (but in the opposite direction).
The op-amp
attempts to keep its & ndash; input at the same voltage as the + input
(which is at ground). This requires it to drain an amount of current
proportional to the input voltage (V / 1000 ohms). This current goes
through the capacitor, whose voltage is proportional to the integral
of the current flow through it.


Next: Differentiator (inverting)
Previous: Peak Detector
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-currentsrc.html

Current Source





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows
a current
source , a device that provides a
constant amount of current (1.4mA in this case), regardless of the position
of the switch. The transistor's base voltage is fixed at 1.98V
by a voltage divider, which causes a fixed amount of current to flow
through the base (14 & micro;A). The collector current will be
100x that, as long as the collector voltage is not too low relative to
the base.


Next: Current Source Ramp
Previous: Schmitt Trigger
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amdetect.html

AM Detector





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a " crystal
radio " ,
an AM radio receiver with no amplifier. & nbsp; The raw antenna feed is shown in the first scope slot
in the lower left. & nbsp; The
inductor and the capacitor C1 are tuned to 3 kHz, the frequency shown in
the lower right as " res.f " . & nbsp;
This picks up the carrier wave shown in the middle scope
slot. & nbsp; A diode is used to
rectify this, and the C2 capacitor smoothes it out to generate
the broadcast
signal in the last scope slot (which is simply a 12 Hz sine wave in this
example). & nbsp; By experimenting
with the value of C1's capacitance, you can pick up two other " stations "
at 2.71 kHz and 2.43 kHz.


Next: Waveform Clipper
Previous: Voltage Quadrupler
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-divideby2.html

Divide-by-2





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows how a D flip-flop can be used to divide the frequency of a clock
signal by 2.


Next: Divide-by-3
Previous: Johnson Counter / Decade Counter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-itov.html

Current-to-Voltage Converter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit converts an input current to a proportional amount of voltage. Use the two
switches to select an input current. This current flows across a 1k resistor. The op-amp
outputs a voltage equal to the voltage drop across the resistor in order to
ensure that the & ndash; terminal is at ground, which means that the output voltage
is proportional to the resistor voltage (and therefore to the input current).


Next: Voltage Regulator
Previous: Howland Current Source
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mosfollower.html

Source Follower





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is
a source follower or buffer
amplifier circuit
using a
MOSFET .
The output is simply equal to the input minus about 2.2V.
The advantage of this circuit is that the MOSFET can provide current
and power gain; the MOSFET draws no current from the input. It
provides low output
impedance to any circuit using the output of the follower,
meaning that the output will not drop under load. Its output impedance is not
as low as that of an emitter follower using a bipolar
transistor (as you can verify by connecting a resistor from the output to -15V),
but it has the advantage that the
input impedance is
infinite.

The MOSFET is in saturation,
so the current across it is determined by the gate-source voltage. Since a current source
keeps the current constant, the gate-source voltage is also constant.


Next: Current Source
Previous: Switch
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-nic-r.html

Negative Impedance Converter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







The circuit on the left converts a positive impedance to a negative impedance.
So, for example, instead of Ohm's Law (E=IR) it causes a resistor to
obey E=-IR. The circuit on the right shows a positive impedance (a 150 ohm resistor)
for comparison.

The op-amp
attempts to keep its & ndash; input at the same voltage as the + input,
which is connected to the input signal. So the impedance being transformed
(a 150 ohm resistor) responds as if it were connected directly to the input signal. Whatever
current it needs is sourced by the op-amp and flows through the bottom 100 ohm resistor.

Since the + input is at the same voltage as the & ndash; input, the current and
voltage drop across the top 100 ohm resistor must be the same as the bottom one. As a result,
when
the input voltage is positive, current is flowing into the input rather than out of it.
The input current is the same as the current through the impedance, but in the
opposite direction.


Next: Gyrator
Previous: Phase-Shift Oscillator Filter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amp-follower.html

Follower





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is
a voltage follower or buffer
amplifier circuit, where the output is simply equal to the input.
The advantage of this circuit is that the op-amp can provide current
and power gain; the op-amp draws almost no current from the input. It
provides low output
impedance to any circuit using the output of the follower,
meaning that the output will not drop under load. The load is a 1k
resistor in this case; the op-amp provides all the current needed
to drive the load, without requiring any current from the input.


Next: Differential Amplifier
Previous: Noninverting Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-diff.html

Differentiator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows that a capacitor can act as a differentiator, by tracking
changes in the input signal. Here, when the input voltage
suddenly increases, the output is a positive spike. When the input decreases,
the output is a negative spike.


Next: Wheatstone Bridge
Previous: 3- and 4-Way Light Switches
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-longdist.html

Long Distance Power Transmission





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







Here we have an example of
long-distance
power transmission , showing the value of using high voltages. The
generator at left generates 120 V, and a step-up transformer converts
it to about 113 kilovolts. This greatly reduces the current, and
thereby the resistance losses, over the transmission wires (represented by the
500 ohm resistors). A step-down transformer brings the voltage down
to about 114 V for the load at right. The graph on the lower left shows
the power transmitted to the load.

For comparison, the same setup without transformers is shown at the
bottom. The resistance losses are much higher, and the transmitted
power (shown at the lower right) is much lower. (Although the power
delivered by the source is much lower as well; but if you compare the
power delivered the source to the power consumed by the load, the
circuit on top is far more efficient than the circuit on the bottom.)


Next: Transformer w/ DC
Previous: Step-Down Transformer
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-res-series.html

Series Resonance





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows series
resonance . Three identical
RLC circuits are being driven by three different frequencies. & nbsp; The middle one is being driven at
the resonance frequency (shown in the lower right corner of the screen as
" res.f " ). & nbsp; The top one is
being driven at a slightly lower frequency, and the bottom one has a
slightly higher frequency. & nbsp;
The peak voltage in the middle circuit is very high because it is
resonating with the source.

Next: Parallel Resonance
Previous: Impedances of Same Magnitude
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > index.html

Circuit Simulator Applet




Sorry, you need a Java-enabled browser to see the simulation.










This java applet is an electronic circuit simulator. & nbsp; When the applet starts up you will see
an animated schematic of a simple LRC circuit. The green
color indicates positive voltage. & nbsp;
The gray color indicates ground. & nbsp;
A red color indicates negative voltage. & nbsp; The moving yellow dots indicate current.

To turn a switch on or off, just click on it. & nbsp; If you move the mouse over any component of the circuit, you
will see a short description of that component and its current state in the
lower right corner of the window. & nbsp; To
modify a component,
move the mouse over it, click the right mouse button (or control-click
if you have a Mac) and select & #8220;Edit & #8221;.

The " Circuits " menu contains a lot of sample circuits for you to try.

If you don't have Java, get the
Java plug-in .

Directions .

Index of Circuit Examples .

More applets.

Zip archive of this applet. (double-click on circuit.jar to run)

The source.

Version 1.6i, posted 11/15/14

Thanks to Edward Calver for 15 new components and other improvements.
Thanks to Rodrigo Hausen for file import/export and many other UI improvements.
Thanks to J. Mike Rollins for the Zener diode code. Thanks to Julius Schmidt for the spark gap code and some examples. Thanks to Dustin Soodak for help with the user interface improvements.
Thanks to Jacob Calvert for the T Flip Flop.












java@ falstad.com


circuit.zip > e-cmosff.html

CMOS Flip-Flop





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a flip flop implemented in
CMOS . It's just a
flip flop implemented with NAND gates , only the
NAND gate implementation is shown in full.


Next: CMOS Master-Slave Flip-Flop
Previous: CMOS XOR
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-synccounter.html

Synchronous Counter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a 4-bit
synchronous counter .

Ripple counters have the disadvantage that not all the bits are updated at the same time; the
flip-flops are all using different clocks. Also,
a ripple counter cannot run as fast because it takes extra time for the carry to be propagated
down the chain of counters.

A synchronous counter solves these problems by using a single clock for all flip-flops, as shown above. Each
flip-flop ANDs together the previous bits to determine whether to update.


Next: Decimal Counter
Previous: 8-Bit Ripple Counter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-twint.html

Twin-T Filter




Sorry, you need a Java-enabled browser to see the simulation.







This filter does a very good job of
filtering out 60 Hz signals.


Next: Crossover
Previous: Notch Filter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-hartley.html

Hartley Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a Hartley
oscillator , an oscillator that
uses an LC
circuit combined with a
transistor
for feedback.

With the transistor removed, the capacitor and two inductors form a
resonant circuit, like the LRC example . Current moves back and
forth as the capacitor charges and discharges through the inductors. The transistor
amplifies this oscillation and prevents it from dying out.

The transistor cannot conduct until its base is at about 680mV. When the transistor is
off, the output is around 4.7 V. Current from the 1k resistor gets a current going to
ground through L2. As the bottom of L2 reaches ground, L2 resists any change in current
and current continues to flow, now through the capacitor and L1. This brings the
transistor base voltage up to where the transistor can conduct, bringing the output low.

Once the base voltage is high, the current through L1 and L2 begins to reverse,
draining the capacitor
and bringing the base voltage down again, turning off the transistor and bringing the
output high again.


Next: Emitter-Coupled LC Oscillator
Previous: Colpitts Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tlstand.html

Standing Wave on a Transmission Line





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple circuit using a
transmission
line . The wave goes across the transmission line and is reflected
at the other end, because the line is not terminated properly. This
creates a standing
wave on the line, which is a wave that oscillates but does not appear to
travel. It is actually the combination of two waves (the initial wave,
and the reflected wave) traveling in opposite directions.

In the
scope, you can see that the peak voltage across the resistor doubles
as soon as the wave is reflected, 4 nanoseconds after the oscillation
starts. Click the Reset button to see it again.


Next: Termination of a Transmission Line
Previous: Simple Transmission Lines
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-fullrect.html

Full-Wave Rectifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses four diodes in a bridge configuration to
rectify both halves
of the input sine wave.


Next: Full-Wave Rectifier w/ Filter
Previous: Half-Wave Rectifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-phaseshiftosc.html

Phase-Shift Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a phase-shift
oscillator . The set of three capacitors and two resistors form a
filter that shifts their input by 180 degrees at the oscillation
frequency. The output of this filter goes into an inverting
amplifier, and the output of this amplifier goes back into the filter, providing
positive feedback at the oscillation frequency.


Next: Phase-Shift Oscillator Filter
Previous: Voltage-Controlled Oscillator
Analog Filter Applet
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-spark-sawtooth.html

Sawtooth Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple sawtooth generator using a spark gap . When
the voltage across the capacitor reaches the spark gap's breakdown
voltage (1 kV), the spark gap fires, allowing current to flow that
quickly drains the capacitor. When the current stops, the spark gap
stops conducting and the cycle begins again.


Next: Tesla Coil
Previous: Tunnel Diode Relaxation Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-schmitt.html

Schmitt Trigger





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is
a Schmitt
Trigger , a type of comparator. It measures the input to see
if it is above or below a certain threshold. The threshold varies to
make it less likely that the output will switch rapidly back and forth
due to a noisy input near the threshold.

The input is a noisy 40 Hz sine wave, shown in the first scope. The
output is shown in the second scope. The third scope is a graph of
the output versus input.

Let's say the input starts at ground.
A voltage divider puts Q1's collector at about 2.1 V, and Q2's base at
about 1.5 V. Q2's emitter is at about 900mV, about a diode drop lower than its base.
Q2 is conducting, bringing the output low.

Q1's emitter is tied to Q2's, at 900mV, so Q1 will be off until the input rises
to about 1.5V. Once that happens, Q1 will conduct, bringing its
collector low, which will lower the voltage of Q2's base and shut it off,
bringing the output high.

If the input drops slightly below 1.5V, Q1 will stay on, because Q2 is
no longer keeping its emitter at 900mV. So a noisy input will not
cause the output to shift rapidly between high and low.

The input has to drop below about 1.1V in order to turn on Q2. When
this happens, the current Q1 is low enough that it comes out of saturation and goes
into forward-active
mode, and the voltage drop across it becomes large enough to
turn on Q2. Q2 shuts off Q1 and brings the output low.

If the input rises slightly above 1.1V again, this will not change the
output; the input has to rise above 1.5V to turn on Q1.

If the simulator says " Convergence failed " just click reload. The applet
often has trouble simulating this circuit.


Next: Current Source
Previous: Unity-Gain Phase Splitter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-inductkick-block.html

Blocking Inductive Kickback





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows how inductive
kickback can be blocked with a diode.


Next: Spike Generator
Previous: DC Restoration
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-npn.html

NPN Transistor (Bipolar)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a demonstration of an NPN
transistor . The emitter
is at ground, and the base and collector voltages can be controlled using the sliders at right.
Move the mouse over the transistor to see labels for the three terminals.

The base-emitter junction acts like a diode .
Little current flows into the base unless it is above about 0.6V. Assuming the collector is at a
higher voltage than the base, the collector-emitter current is 100 times the base current.
So, this transistor has a beta (current gain) of 100.
Moving the collector voltage higher or lower won't have any effect as long as it's higher
than the base voltage. This is forward active mode.

A transistor is often considered to be in saturation mode when the collector is lower than the
base. But it still acts like forward active mode unless the voltage difference, V bc ,
is on the order of a diode drop (.6 V). If the base is at .7V and the collector is dropped
to about .14V or lower, the base current will go up and the collector current will go down,
so it will no longer be 100 times the base current. This is saturation, where the transistor
acts like a low-resistance switch, with a small voltage drop from the collector to
the emitter.


Next: PNP Transistor (Bipolar)
Previous: Ternary Logic Inverter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tlmis1.html

Mismatched transmission lines (Standing Wave)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple circuit showing two mismatched
transmission
lines . The first line is 75 ohms, and the second line is 500 ohms. Waves
traveling down the first line are reflected at the boundary, causing a
standing
wave on the line, which is a wave that oscillates but does not appear to
travel. It is actually the combination of two waves (the initial wave,
and the reflected wave) traveling in opposite directions.

The second line is properly terminated, so there are no reflections on that one.


Next: Impedance Matching (L-Section)
Previous: Mismatched transmission lines (Pulse)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > directions.html

v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}


Circuit Simulator Applet Directions



Normal
Paul Falstad
2
2008-01-23T15:20:00Z
2008-01-23T16:02:00Z
3
4263
24301

202
48
29843
11.0



























Click here to go to the applet.

This java applet is an electronic circuit simulator. & nbsp; When the applet starts up you will see
a simple LRC circuit. & nbsp; The green
color indicates positive voltage. & nbsp;
The gray color indicates ground. & nbsp;
A red color indicates negative voltage. & nbsp; The moving yellow dots indicate current.

To turn a switch on or off, just click on it. & nbsp; If you move the mouse over any component of the circuit, you
will see a short description of that component and its current state in the
lower right corner of the window. & nbsp;
To modify a component (say, to change the resistance of one of the
resistors), move the mouse over it, click the right mouse button (or
control-click, if you have a Mac) and select "Edit".

There are three graphs at the bottom of the window; these act like
oscilloscopes, each one showing the voltage and current across a particular
component. & nbsp; Voltage is shown in
green, and current is shown in yellow. & nbsp;
The current may not be visible if the voltage graph is on top of
it. & nbsp; The peak value of the voltage
in the scope window is also shown. & nbsp;
Move the mouse over one of the scope views, and the component it is
graphing will be highlighted. & nbsp; To
modify or remove a scope, click the right mouse button over it. & nbsp; To view a component in the scope, click
the right mouse button over the component and select "View in Scope".

If the simulation is moving too slowly or too quickly, you can adjust the
speed with the "Simulation Speed" slider.









The Circuits menu can be used to
view some interesting pre-defined circuits. Once a circuit is selected, you may
modify it all you want. The choices are:


Basics

Resistors : this shows some resistors of various sizes
in series and parallel.
Capacitor : this shows a capacitor that you can charge
and discharge by clicking on the switch.
Inductor : this shows an inductor that you can charge
and discharge by clicking on the switch.
LRC
Circuit : this shows an
oscillating circuit with an inductor, resistor, and capacitor. & nbsp; You can close the switch to get
current moving in the inductor, and then open the switch to see the
oscillation.
Voltage
Divider : this shows a voltage
divider, which generates a reference voltage of 7.5V, 5V, and 2.5V from
the 10V power supply.
Thevenin's
Theorem states that the circuit
on top is equivalent to the circuit on the bottom.
Norton's
Theorem states that the circuit
on top is equivalent to the circuit on the bottom.

A/C Circuits

Capacitor : this shows a capacitor connected to an
alternating voltage source.
Inductor
Caps of Various
Capacitances : shows the response of
three different capacitors to the same frequency.
Caps w/ Various
Frequencies : shows the response of
three equal capacitors to three different frequencies; the higher the
frequency, the larger the current.
Inductors of
Various Inductances : shows the
response of three different inductors to the same frequency.
Inductors w/
Various Frequencies : shows the
response of three equal inductors to three different frequencies: the
lower the frequency, the larger the current.
Impedances of Same
Magnitude : shows a capacitor, an
inductor, and a resistor that have impedances of equal magnitude (but
different phase). & nbsp; The peak
current is the same in all three cases.
Series
Resonance : shows three identical
LRC circuits being driven by three different frequencies. & nbsp; The middle one is being driven at
the resonance frequency (shown in the lower right corner of the screen as
"res.f"). & nbsp; The top one is
being driven at a slightly lower frequency, and the bottom one has a
slightly higher frequency. & nbsp;
The peak voltage in the middle circuit is very high because it is
resonating with the source.
Parallel
Resonance : these three circuits
have the inductor, resistor, and capacitor in parallel instead of
series. & nbsp; In this case, the
middle circuit is being driven at resonance, which causes the current
there to be lower than in the other two cases (because the impedance of
the circuit is highest at resonance).

Passive Filters

High-Pass
Filter (RC) . & nbsp; The original signal is shown at the lower left, and the filtered
signal (with the low-frequency part removed) is shown to the right. & nbsp; The breakpoint (-3 dB point) is
shown at the lower right, as "f.3db".
Low-Pass
Filter (RC).
High-Pass Filter (RL). & nbsp;
This high-pass filter uses an inductor rather than a capacitor.
Low-Pass Filter
(RL).
Band-Pass Filter : this filter passes a range of frequencies
close to the resonance frequency (shown at the lower right, as "res.f").
Notch Filter : Also known as a band-stop filter, this
circuit filters out a range of frequencies close to the resonance
frequency.
Twin-T Filter : This filter does a very good job of
filtering out 60 Hz signals.
Crossover: & nbsp; A
set of three filters; the top one passes low frequencies, the middle one
passes midrange, and the bottom one passes high frequencies.

Other Passive Circuits

Series/Parallel

Inductors in
Series . & nbsp; The circuit at left is equivalent to the circuit at
right.
Inductors in
Parallel.
Caps in Series.
Caps in Parallel.

Transformers

Transformer :
A basic transformer circuit with an
equal number of windings in each coil.
Transformer w/ DC:
Here we try to pass a DC current
through a transformer.
Step-Up
Transformer: Here we step 10 V up
to 100 V.
Step-Down
Transformer: Here we step 120 V
down to 12 V.

3-Way Light
Switches : shows how a light bulb can
be turned on and off from two locations.
3- and 4-Way Light
Switches : shows how a light bulb can
be turned on and off from three locations.
Differentiator : shows how a capacitor can act as a
differentiator, reflecting changes in voltage.
Wheatstone Bridge : shows a balanced Wheatstone bridge. & nbsp; If the bridge were not balanced,
current would be flowing across from one leg to the other.
Critically Damped LRC .
Current Source : shows a source that keeps the current
through the circuit constant regardless of the switch positions.
Inductive Kickback : In this circuit, we have a switch that
controls the supply of current to an inductor. & nbsp; An inductor resists any changes in current. & nbsp; If you open the switch, the
inductor tries to maintain the same current; it does this by charging the
capacitance between the contacts of the switch. & nbsp; (Any two wires in close proximity have some parasitic
capacitance between them.) & nbsp;
There is a small capacitor (much larger than the actual value)
across the switch terminals to simulate this. & nbsp; When you open the switch, the voltage goes very high;
in real life, this would cause arcing.
Blocking Inductive
Kickback : shows how inductive
kickback can be blocked with a "snubber" circuit.


Power
Factor : This circuit shows an
inductor being driven by an AC voltage. & nbsp; The colors indicate power consumption; red means that
a component is consuming power, and green means that the component is
contributing power. & nbsp; The left
side of the circuit represents the power company's side, and the right side
represents a factory (with a large induction motor).

The highly inductive load is causing the power company to work a lot
harder than normal for a given amount of power delivered. & nbsp; The graph on the left indicates the power lost in the power
company's equipment (the resistor at top left). & nbsp; The graph in the middle is the power delivered to the
factory. & nbsp; The graph on the
right is the power delivered to the inductor (and then returned, causing
the time average of power delivered to be zero).

Even though a peak power of 40 mW is being delivered to the factory, 200
mW is being dissipated in the power company's wires. & nbsp; This is why power companies
charge extra for inductive loads.


Power
Factor Correction: Here a
capacitor has been added to the circuit, causing far less energy to be
wasted in the power company's wires (aside from an initial spike to
charge the capacitor).
Resistor Grid : shows current flowing in a two-dimensional
grid of resistors.
Resistor Grid 2.
Coupled LC's



o & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
LC Modes(2) :
Shows both modes of two coupled LC circuits.

o & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
Weak Coupling.

o & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
LC Modes(3) :
Shows all 3 modes of 3 coupled LC circuits.

o & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
LC Ladder : This
circuit is a simple model of a transmission line. & nbsp; A pulse propagates down the length of the ladder like a
wave. & nbsp; The resistor at the end has
a value equal to the characteristic impedance of the ladder (determined by the
ratio of L to C), which causes the wave to be absorbed. & nbsp; A larger resistance or an open circuit
will cause the wave to be reflected; a smaller resistance or a short will cause
the wave to be reflected negatively. & nbsp; See the Feynman
Lectures 22-6, 7.



Phase-Sequence
Network: This circuit generates a
series of sine waves with a phase difference of 90°.
Lissajous Figures :
Just for fun.

Diodes

Half-Wave Rectifier : This circuit removes the negative part of an
input waveform.
Full-Wave Rectifier : This circuit replaces a waveform with its
absolute value.
Full-Wave Rectifier
w/ Filter : This circuit smoothes out
the rectified waveform, doing a pretty good job of converting AC to DC.
Diode I/V Curve : This demonstrates the response of a diode to
an applied voltage. & nbsp; The
voltage source generates a sawtooth wave, which starts out at -800 mV and
slowly rises to 800 mV, and then immediately drops back down again.
Diode Limiter .
DC Restoration. & nbsp;
This takes an AC signal and adds a DC offset, making it a positive
signal.
Blocking Inductive
Kickback : shows how inductive
kickback can be blocked with a diode.
Spike Generator.
Voltage Multipliers

Voltage Doubler : Doubles the voltage in the AC input signal
(minus two diode drops), and turns it into DC.
Voltage Doubler 2
Voltage Tripler
Voltage Quadrupler

AM
Detector : This is a "crystal
radio", an AM radio receiver with no amplifier. & nbsp; The raw antenna feed is shown in the first scope slot
in the lower left. & nbsp; The
inductor and the capacitor C1 are tuned to 3 kHz, the frequency shown in
the lower right as "res.f". & nbsp;
This picks up the carrier wave shown in the middle scope
slot. & nbsp; A diode is used to
rectify this, and the C2 capacitor smoothes it out to generate the audio
signal in the last scope slot (which is simply a 12 Hz sine wave in this
example). & nbsp; By experimenting
with the value of C1's capacitance, you can pick up two other "stations"
at 2.71 kHz and 2.43 kHz.
Triangle-to-Sine
Converter

Transistors

Switch .
Emitter
Follower .
Astable
Multivibrator : A simple
oscillator. & nbsp; The applet has
trouble simulating this circuit, so there might be a slight delay every
time one of the transistors switches on.
Bistable
Multivibrator (Flip Flop) : This
circuit has two states; use the set/reset switches to toggle between
them.
Monostable
Multivibrator (One-Shot) : When
you hit the switch, the output will go to 1.7 V for a short time, and
then drop back down.
Common-Emitter
Amplifier : This circuit amplifies
the voltage of the input signal by about 10 times.
Unity-Gain Phase
Splitter: Outputs two signals 180°
out of phase from each other.
Schmitt
Trigger .
Current Source : The current is the same regardless of the
switch position.
Current Source
Ramp: Uses a current source to
generate a ramp waveform every time you hit the switch.
Current Mirror : The current on the right is the same as the
current on the left, regardless of the position of the right switch.
Differential
Amplifiers

Differential Input:
This circuit subtracts the first
signal from the second and amplifies it.
Common-Mode Input: This shows a differential amplifier with two
equal inputs. & nbsp; The output
should be a constant value, but instead the input waveforms make it
through to the output (attenuated rather than amplified). & nbsp; (When both inputs change
together, that is called "common-mode input"; the "common-mode rejection
ratio" is the ability of a differential amplifier to ignore common-mode
signals and amplify only the difference between the inputs.)
Common-Mode
w/Current Source: This is an
improved differential amplifier that uses a current source as a
load. & nbsp; The common-mode
rejection ratio is very good; the circuit amplifies the small
differences between the two inputs, and ignores the common-mode signal.

Push-Pull Follower:
This is another type of emitter
follower.
Oscillators

Colpitts
Oscillator
Hartley Oscillator
Emitter-Coupled LC
Oscillator


JFETs

JFET Current Source
JFET Follower: This is like an emitter follower, except that
the output is 3V more positive than the input.
JFET Follower
w/zero offset
Common-Source
Amplifier
Volume Control: Here the JFET is used like a variable
resistor.

MOSFETs

CMOS
Inverter : The white "H" is a
logic input. & nbsp; Click on it to
toggle its state. & nbsp; "H" means
"high" (5 V) and "L" means "low" (0 V). & nbsp; The output of the inverter is shown at right, and is
the opposite of the input. & nbsp;
In this (idealized) simulation, the CMOS inverter draws no current
at all.
CMOS Inverter
(w/capacitance) : In reality, there
are two reasons that CMOS gates draw current. & nbsp; This circuit demonstrates the first reason:
capacitance between the MOSFET gate and its source and drain. & nbsp; It requires current to charge
this capacitance, which consumes power. & nbsp; It also causes a short delay when changing state.
CMOS Inverter (slow
transition) : The other reason that
CMOS gates draw current is that both transistors will conduct at the same
time when the input is halfway between high and low. & nbsp; This causes a current spike when
the input is in transition. & nbsp;
In this circuit, there is a low-pass filter on the input which
causes it to transition slowly, so you can see the spike.
CMOS Transmission
Gate : This circuit will pass any
signal, even an analog signal (as long as it stays between 0 and 5 V)
when the gate input is "H". & nbsp;
When it's "L", then the gate acts as an open circuit.
CMOS Multiplexer: This circuit uses two transmission gates to
select one of two inputs. & nbsp; If
the logic input is "H", then the output is a 40Hz triangle wave. & nbsp; If it's "L", then the output is a
80Hz sine wave.
Sample-and-Hold: Click and hold the "sample" button to sample
the input. & nbsp; When you release
the button, the output level will be held constant.
Delayed Buffer: This circuit delays any changes in its input
for 15 microseconds.
Leading-Edge
Detector
Switchable Filter: Click the "L" to select from two different
low-pass filters.
Voltage Inverter
Inverter Amplifier:
This shows how a CMOS inverter can
be used as an amplifier.
Inverter Oscillator

Op-Amps

Amplifiers

Inverting
Amplifier : This one has a gain
of -3.
Non-Inverting
Amplifier
Follower
Differential
Amplifier
Summing
Amplifier
Log Amplifier : output is the (inverted) log of the input
Class D
Amplifier

Oscillators

Relaxation
Oscillator
Phase-Shift
Oscillator
Triangle
Wave Generator
Sine
Wave Generator
Sawtooth Wave
Generator
Voltage-Controlled
Oscillator: Here the frequency of
oscillation depends on the input (shown in the scope on the left). & nbsp; The oscillator outputs a square
wave and a triangle wave.
Rossler Circuit

Half-Wave Rectifier : An active rectifier that works on voltages
smaller than a diode drop.
Full-Wave Rectifier
Peak Detector : This circuit outputs the peak voltage of the
input. & nbsp; Whenever the input
voltage is higher than the output, the output will be adjusted upward to
match. & nbsp; Press the switch
marked "reset" to reset the peak voltage back to 0.
Integrator
Differentiator
Schmitt
Trigger
Negative Impedance
Converter: Converts the resistor to
a "negative" resistor. & nbsp; In
the first graph, note that the current is 180° out of phase with the
voltage.
Gyrator : The top circuit simulates the bottom circuit
without using an inductor.
Capacitance
Multiplier : This circuit allows you
to simulate a large capacitor with a smaller one. & nbsp; The effective capacitance of the
top circuit is C1 x (R1/R2), and the effective resistance is R2.
Howland Current
Source
I-to-V Converter: The output voltage depends on the input
current, which you can adjust with the switches.
741
Internals : The implementation of
a 741 op-amp.

555 Timer Chip

Square Wave
Generator
Internals: The implementation of a 555 chip, acting as a
square wave oscillator
Sawtooth Oscillator
Low-duty-cycle
Oscillator : produces short pulses.
Monostable
Multivibrator : This is a one-shot
circuit that will produce a timed pulse when you click the "H".
Pulse Position
Modulator: Produces pulses whose
width is proportional to the input voltage.
Schmitt Trigger
Missing Pulse
Detector: Setting the logic input
low will turn off the square wave input. & nbsp; The missing pulse detector will detect the missing
input and bring the output high.

Active Filters

VCVS Low-Pass Filter: An active Butterworth low-pass filter.
VCVS High-Pass
Filter
Switched-Capacitor
Filter: A digital filter,
implemented using capacitors and analog switches.

Logic Families

RTL Logic Family

RTL
Inverter : The white "H" is a
logic input. & nbsp; Click on it to
toggle its state. & nbsp; "H" means
"high" (3.6 V) and "L" means "low" (0 V). & nbsp; The output of the inverter is shown at right, and is
the opposite of the input.
RTL
NOR : The three inputs are at
the bottom, and the output is to the right. & nbsp; The output is "L" if any of the inputs are "H". & nbsp; Otherwise it's "H".
RTL NAND : The output is "H" unless all three inputs
are "H", and then it's "L".

DTL Logic Family

DTL
Inverter
DTL
NAND
DTL
NOR

TTL Logic Family

TTL
Inverter
TTL NAND
TTL
NOR

NMOS Logic Family

NMOS Inverter
NMOS Inverter 2 : This uses a second MOSFET instead of a
resistor, to save space on a chip.
NMOS NAND

CMOS
Logic Family

CMOS Inverter
CMOS NAND
CMOS NOR
CMOS XOR
CMOS
Flip-Flop (or latch) : This
circuit consists of two CMOS NAND gates.
CMOS
Master-Slave Flip-Flop

ECL
Logic Family

ECL NOR/OR

Ternary : This demonstrates three-valued logic, where
the inputs can be 0, 1, or 2 instead of H and L. & nbsp; This logic is implemented using
MOSFETs; the threshold
voltage of each one is shown.

CGAND: the output is 2-X where X is the minimum of
the two inputs.
CGOR: the output is 2-X where X is the maximum of
the two inputs.
Complement.
F211: 0 becomes 2, 1 becomes 1, 2 becomes 1.
F220
F221


Combinational Logic

Exclusive OR
(XOR)
Half Adder
Full Adder
1-of-4 Decoder
2-to-1
Mux : This multiplexer uses two
tri-state buffers connected to the output.
Majority Logic: The output is high if a majority of the inputs
are high.
2-Bit Comparator : Tells you if the two-bit input A is greater
than, less than, or equal to the two-bit input B.
7-Segment LED
Decoder

Sequential Logic

Flip-Flops

SR
Flip-Flop
Clocked
SR Flip-Flop
Master-Slave
Flip-Flop
Edge-Triggered D
Flip-Flop : This circuit changes
state when the clock makes a positive transistion.

Counters

4-Bit
Ripple Counter
8-Bit Ripple
Counter
Synchronous
Counter
Decimal
Counter
Gray Code Counter
Johnson
Counter

Divide-by-2 : Divides the input frequency by 2.
Divide-by-3
LED Flasher: This circuit uses a decade counter to flash
some LED's in a back and forth pattern.
Traffic
Light
Dynamic RAM: This is a simple model of a dynamic RAM
chip. & nbsp; To read from the chip,
select the bit you want using the row select lines. & nbsp; To write, select the data bit you
want to write, and click the "write" switch. & nbsp; To refresh a bit, click the "refresh" switch.

Analog/Digital

Flash
ADC : This is a
direct-conversion, or "flash" analog-to-digital converter.
Delta-Sigma
ADC
Half-Flash
(Subranging) ADC : Also known as
a pipeline ADC. & nbsp; The first
stage converts the input voltage to a four-bit digital value. & nbsp; Then, a DAC converts these four
bits to analog, and then a comparator calculates the difference between
this and the input voltage. & nbsp;
Another ADC converts this to digital, giving a total of eight
bits.
Binary-Weighted
DAC : & nbsp; Converts a four-bit binary number to a negative
voltage.
R-2R
Ladder DAC
Switch Tree DAC
Digital Sine Wave

Phase-Locked Loops

XOR Phase Detector: Shows an XOR gate being used as a type I
phase detector. & nbsp; The output
is high whenever the two input signals are not in phase.
Type I PLL : This phase-locked loop circuit consists of an
XOR gate (the phase detector), a low-pass filter (the resistor and
capacitor), a follower (the op-amp), and a voltage-controlled oscillator
chip. & nbsp; The voltage-controlled
oscillator outputs a frequency proportional to the input voltage. & nbsp; After the PLL circuit locks onto
the input frequency, the output frequency will be the same as the input
frequency (with a small phase delay).
Phase Comparator
(Type II): Shows a more
sophisticated phase detector, which has no output when the inputs are in
phase, but outputs high (5V) when input 1 is leading input 2, and low
(0V) when input 2 is leading input 1. & nbsp; The phase comparator and VCO in this applet are based
on the 4046
chip .
Phase Comparator
Internals.
Type II PLL: Shows a phase-locked loop with a type II phase
detector. & nbsp; If you adjust the
input frequency, the output should lock onto it in a short time.
Type II PLL (fast): Just a faster simulation of the type II PLL.
Frequency Doubler

Transmission Lines

Simple TL: A properly terminated transmission line,
showing the delay as the signal travels down the line.
Standing Wave: A standing wave on a shorted transmission
line.
Termination: The top line is terminated properly, but the
others are not, and so the incoming wave is reflected.
Mismatched lines: Shows reflections caused by the middle line
having a different impedance than the other two lines.
Mismatched lines 2:
Shows a standing wave on the first
line, caused by the second line having a different impedance.



To
add a new component to the circuit, click the right mouse button on an unused
area of the window. & nbsp; This will
bring up a menu that allows you to select what component you want. & nbsp; Then click where you want the first
terminal of the component, and drag to where you want the other terminal. & nbsp; The menu items allow you to create:

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
wires

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
resistors; you can adjust the resistance after creating
the resistor by clicking the right mouse button and selecting "Edit"

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
capacitors; you can adjust the capacitance using "Edit"

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
inductors, switches, transistors, etc.

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
voltage sources, in either 1-terminal or 2-terminal
varieties. & nbsp; The 1-terminal versions
use ground as the other terminal. & nbsp;
By clicking the right mouse button and selecting "Edit", you can modify
the voltage and the waveform of the voltage source, changing it to DC, AC (sine
wave), square wave, triangle, sawtooth, or pulse. & nbsp; If it's not a DC source, you can also change the frequency
and the DC offset.

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
op-amps, with power supply limits of -15V and 15V
assumed (not shown). & nbsp; The limits
can be adjusted using "Edit".

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
text labels, which you can modify with the "Edit"
dialog

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
scope probes; these have no effect on the circuit, but
if you select them and use the right mouse menu item "View in Scope", you can
view the voltage difference between the terminals.

Also
in the "Other" submenu, there are some items that allow you to click and drag
sections of the circuit around. & nbsp;
Save your work before trying these.

The
File menu allows you to import or
export circuit description files. & nbsp;
Java security restrictions usually prevent an applet from writing files
to a user's computer. & nbsp; So instead,
when you select the File- & gt;Export
menu item, the applet brings up a window containing the description file for
the circuit, which you can copy and paste into another application. & nbsp; You can paste the file back into the
window later and click Import to
load it.

The
Reset button resets the circuit to a
reasonable state. & nbsp; The Stopped
checkbox allows you to stop the
simulation. & nbsp; The Simulation
Speed slider allows you to adjust the
speed of the simulation. & nbsp; If the
simulation isn't time-dependent (that is, if there are no capacitors,
inductors, or time-dependent voltage sources), then this won't have any effect. & nbsp; The Current Speed slider lets you adjust the speed of the dots, in
case the currents are so weak (or strong) that the dots are moving too slowly
(or too quickly).

To
edit one of the scope views, click the right mouse button on it to view a
menu. & nbsp; The menu items allow you to
remove a scope view, speed up or slow down the display, adjust the scale,
select what value(s) you want to view, etc.

Here
are some errors you might encounter when using the simulator:

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
Voltage source loop with no resistance! - this means one of the voltage sources in your
circuit is shorted. & nbsp; Make sure
there is some resistance across every voltage source.

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
Capacitor loop with no resistance! - it's not allowed to have any current loops
containing capacitors but no resistance. & nbsp;
For example, capacitors connected in parallel are not allowed; you must
put a resistor in series with them. & nbsp;
Shorted capacitors are allowed.

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
Singular matrix!
- this means that your circuit is inconsistent (two different voltage sources
connected to each other), or that the voltage at some point is undefined. & nbsp; It might mean that some component's
terminals are unconnected; for example, if you create an op-amp but haven't
connected anything to it yet, you will get this error. & nbsp;

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
Convergence failed! - this means the simulator can't figure out what the state of the
circuit should be. & nbsp; Just click Reset and hopefully that should fix it. & nbsp; Your circuit might be too complicated,
but this happens sometimes even with the examples.

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
Transmission line delay too large! - the transmission line delay is too large compared
to the timestep of the simulator, so too much memory would be required. & nbsp; Make the delay smaller.

? & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;
Need to ground transmission line! - the bottom two wires of a transmission line must
always be grounded in this simulator.

Click here to go to the applet.










java@ falstad.com


circuit.zip > e-vco.html

Voltage-Controlled Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a voltage-controlled oscillator, which is an oscillator whose
frequency is determined by a control voltage. A 10 Hz sawtooth oscillator
provides the control voltage in this case; this causes the frequency to rise slowly
until it hits a maximum and then falls back to the starting frequency.

The first op-amp is an integrator . A voltage
divider puts the + input at half the control voltage. The op-amp attempts to keep
its & ndash; input at the same voltage, which requires a current flow across the
100k to ensure that its voltage drop is half the control voltage.

When the MOSFET at the bottom is on, the current from the 100k
goes through the MOSFET. Since
the 49.9k resistor has the same voltage drop as the 100k but half the resistance,
it must have twice as much current flowing through it. The additional
current comes from the
capacitor, charging it, so the first op-amp must provide a steadily rising output
voltage to source this current.

When the MOSFET at the bottom is off, the current from the 100k goes through the
capacitor, discharging it, so a steadily falling output voltage is needed from the
first op-amp. The third scope shows the output voltage; it looks like a triangle wave .

The second op-amp is a Schmitt trigger . It takes
the triangle wave as input. When the
input voltage rises above the threshold of 3.33 V, it outputs 5 V and the
threshold voltage falls to 1.67 V. When the input voltage falls below that,
the output goes to 0 V and the threshold moves back up. The output is a square
wave. It's connected to the MOSFET, causing the integrator to raise or lower its
output voltage as needed.


Next: Phase-Shift Oscillator
Previous: Sine Wave Generator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-xor.html

Exclusive OR





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit outputs high when only one input is high, not both. Click on any of the
inputs to change their state.


Next: Half Adder
Previous: ECL NOR/OR
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-opampfeedback.html

Op-Amp Feedback





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple demonstration of negative feedback using an
op-amp .
You can control the + input using the slider on the
right. Since the op-amp's output is fed back into the & ndash; input,
it attempts to keep its output at the same level as the + input.


Next: Inverting Amplifier
Previous: Op-Amp
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-pushpullxover.html

Simple Push-Pull Follower, with Distortion





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a Class B
amplifier, or push-pull follower. There is no voltage gain, but it amplifies current 100x.
It's more efficient than a simple class A , which is always
conducting, even when there is no input at all. This dissipates a lot of power. The
push-pull only draws current proportional to the output.

One drawback of the push-pull is
crossover distortion . The
output is distorted whenever it crosses ground. We can
improve on this .


Next: Improved Push-Pull Follower
Previous: Differential Amplifier: Common-Mode w/Current Source
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mosswitch.html

Switch





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







A simple switch circuit using a
MOSFET . When the switch is
closed, the gate voltage is brought high enough relative to the source that
current can flow. The gate draws no current, but can control the flow of
current across the source and drain.


Next: Source Follower
Previous: p-MOSFET
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-rtlnand.html

RTL NAND





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an NAND gate
implemented using resistor-transistor
logic , the earliest form of logic implemented with transistors. Click on the
inputs on the left to toggle their state. When all of the inputs are high,
the output is low; otherwise, the output is high.

When all the inputs are high (3.6 V), a current flows from the base to the emitter of
all the transistors. Each
transistor wants its collector-emitter current to be 100 times the base current, but
it can't, because the collector is connected to the same voltage through a larger
resistor. So, the transistors are in saturation mode; they maximize the current
to bring the output voltage down as low as possible.

When any of the inputs are low (at ground), no current flows through the base of the
corresponding transistor, so it
switches off. With no path to ground, the output stays at 3.6 V.


Next: DTL NAND
Previous: RTL Inverter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-opamp-regulator.html

Voltage Regulator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit takes a variable input voltage and outputs a stable voltage,
regardless of the current required by the load. A zener diode provides a
voltage reference, keeping the + input of the op-amp about 6V above ground.
The op-amp outputs whatever voltage is required to keep the & ndash; input
also at 6V; a voltage divider ensures that the output voltage is 2 times the
& ndash; input voltage, or 12V.

You can adjust the sliders at right to change the input current or load
current; the 12V output voltage should not change.

Thanks to Eric Jorgensen for contributing this circuit.



Next: n-MOSFET
Previous: Current-to-Voltage Converter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tlfreq.html

Stub Frequency Response





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows the frequency response of two stubs, one open and one shorted. The input
source sweeps through a range of frequencies; the response is determined by the pattern
of standing waves on the lines. The lower left scope shows the voltage across the
terminating resistor for the open case, and the other scope shows the shorted case.


Next: Low-Pass Filter
Previous: Impedance Matching (Shunt Stub)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-edgedff.html

Edge-Triggered D Flip-Flop





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a
edge-triggered D flip-flop . It functions the same as a
master-slave flip-flop (except that it is positive-edge
triggered), but uses fewer gates in its design.

The circuit consists of 3 set-reset latches . The latch on the right
controls the output. When the D input (at lower left) is high, the lower-left latch is set
whenever the clock is low. This triggers the set input of the upper-left latch, which
sets the output latch whenever the clock is high.
When the D input is low, the lower-left latch is reset, causing the output latch to be
reset whenever the clock is high.

The result is that output can only change state when the clock makes a transition from low to high.


Next: JK Flip-Flop
Previous: Master-Slave Flip-Flop
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-voltquad.html

Voltage Quadrupler





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses some diodes and capacitors to generate 57 V from an
15 V input signal.


Next: AM Detector
Previous: Voltage Tripler
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-phasesplit.html

Unity-Gain Phase Splitter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit takes an input and provides two outputs equal to the input, but with
opposite phases.

The capacitor and the 150k and 56k resistors bias the transistor. The base-emitter junction acts like
a diode, so that the emitter will be a diode drop lower than the base.

The emitter voltage fluctuates with the input voltage, and so the current across the emitter
resistor fluctuates proportionately. Since the collector resistor has the same current
across it, the collector voltage swings the same amount, but
with phase opposite to the input, because the larger the current, the larger the voltage
drop from +20V.


Next: Schmitt Trigger
Previous: Common-Emitter Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-trans-diffamp-cursrc.html

Differential Amplifier: Common-Mode w/Current Source





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a differential
amplifier built using two transistors and a current source. The
output is equal to the voltage difference between the two inputs.
Input 1 is a 40Hz signal, and input 2 is a 40Hz signal with some small
voltage spikes added in. (In
this simulation, the two signals are added simply by connecting the two
sources in series, which is convenient but not realistic.)
The output is just the voltage spikes. The common-mode
rejection ratio of this circuit is much better than the
previous example ; the 40Hz
sine wave is not visible at all in the output.

The two inputs are connected to the bases of the two transistors. The
two emitters are tied together.

In the differential-mode case, when input 1 rises and input 2 falls by the
same amount, there is more base current through transistor 1, and less
through transistor 2. There is also a corresponding increase in
collector current. The total current through the current source
does not change. The reduced current through the right
transistor causes the output to rise. When input 1 falls and input 2
rises, the output falls.

In the common-mode case, when input 1 and input 2 rise together, the
current source resists any change in base currents. The emitter
voltages rise to match the input changes. Since transistor 2's collector current hasn't
changed, the output stays the same as well.


Next: Simple Push-Pull Follower, with Distortion
Previous: Differential Amplifier: Common-Mode Input
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-fulladd.html

Full Adder





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a full adder ,
which adds three binary numbers and
produces a two-digit binary result.


Next: 1-of-4 Decoder
Previous: Half Adder
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mr-square.html

Memristor Response to Square Wave





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows a memristor 's
response to a
square wave .
The graphs
below the circuit show the memristor's voltage
(in green), current (in yellow), and resistance (in white). A graph of voltage versus
current is also shown.


Next: Memristor Response to Triangle Wave
Previous: Memristor Response to Sine Wave
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-index.html

Electronics Demonstrations



Electronics Demonstrations

The following demonstrations use a java applet that simulates
electronic circuits. Click on the
" Resistors " example for a brief summary
of how the applet works. Or you can use the full applet .


Basics
Ohm's Law
Resistors
Capacitor
Inductor
RLC Circuit
Voltage Divider
Series/Parallel
Inductors in Series
Inductors in Parallel
Capacitors in Series
Capacitors in Parallel

Thevenin's Theorem
Norton's Theorem

A/C Circuits
A/C Response of Capacitor
A/C Response of Inductor
Caps of Various Capacitances
Caps w/ Various Frequencies
Inductors of Various Inductances
Inductors w/ Various Frequencies
Impedances of Same Magnitude
Series Resonance
Parallel Resonance

Passive Filters
High-Pass Filter (RC)
High-Pass Filter response (RC)
Low-Pass Filter (RC)
High-Pass Filter (RL)
Low-Pass Filter (RL)
Band-Pass Filter
Notch Filter
Twin-T Filter
Crossover

Other Passive Circuits
3-Way Light Switches
3- and 4-Way Light Switches
Differentiator
Wheatstone Bridge
Critically Damped RLC
Current Source
Transformers
Transformer
Step-Up Transformer
Step-Down Transformer
Long Distance Power Transmission
Transformer w/ DC

Inductive Kickback
Blocking Inductive Kickback
Power Factor
Power Factor Correction
LC Ladder
Phase-Sequence Network

Diodes
Diode
Diode I/V Curve
Half-Wave Rectifier
Full-Wave Rectifier
Full-Wave Rectifier w/ Filter
Diode Limiter
Zener Diodes
Zener I/V Curve
Zener Voltage Reference
Zener Voltage Reference w/ Follower

DC Restoration
Blocking Inductive Kickback
Spike Generator
Voltage Multipliers
Voltage Doubler
Voltage Tripler
Voltage Quadrupler

AM Detector
Waveform Clipper
Triangle-to-Sine Converter

Op-Amps
Op-Amp
Op-Amp Feedback
Amplifiers
Inverting Amplifier
Noninverting Amplifier
Follower
Differential Amplifier
Summing Amplifier
Log Amplifier
Class-D Amplifier

Half-Wave Rectifier (inverting)
Full-Wave Rectifier
Peak Detector
Integrator (inverting)
Differentiator (inverting)
Schmitt Trigger
Oscillators
Relaxation Oscillator
Triangle Wave Generator
Sawtooth Wave Generator
Sine Wave Generator
Voltage-Controlled Oscillator
Phase-Shift Oscillator
Phase-Shift Oscillator Filter

Negative Impedance Converter
Gyrator
Capacitance Multiplier
Howland Current Source
Current-to-Voltage Converter
Voltage Regulator

MOSFETs
n-MOSFET
p-MOSFET
Switch
Source Follower
Current Source
Current Ramp
Current Mirror
Common-Source Amplifier
CMOS Inverter
CMOS Inverter (w/capacitance)
CMOS Inverter (slow transition)
CMOS Transmission Gate
CMOS Multiplexer
Sample-and-Hold
Delayed Buffer
Leading-Edge Detector
Switchable Filter
Voltage Inverter
Inverter Amplifier
Inverter Oscillator
Logic
CMOS NAND
CMOS NOR
CMOS XOR
CMOS Flip-Flop
CMOS Master-Slave Flip-Flop
Ternary Logic Inverter


Transistors (Bipolar)
NPN Transistor (Bipolar)
PNP Transistor (Bipolar)
Switch
Emitter Follower
Common-Emitter Amplifier
Unity-Gain Phase Splitter
Schmitt Trigger
Current Source
Current Source Ramp
Current Mirror
Differential Amplifiers
Differential Amplifier
Differential Amplifier: Common-Mode Input
Differential Amplifier: Common-Mode w/Current Source

Push-Pull Follower
Simple Push-Pull Follower, with Distortion
Improved Push-Pull Follower

Multivibrators
Bistable Multivibrator (Flip-Flop)
Astable Multivibrator (Oscillator)
Monostable Multivibator (One-Shot)

Oscillators
Colpitts Oscillator
Hartley Oscillator
Emitter-Coupled LC Oscillator

Logic
RTL Inverter
RTL NAND
DTL NAND
TTL NAND
TTL NOR
ECL NOR/OR


Combinational Logic
Exclusive OR
Half Adder
Full Adder
1-of-4 Decoder
2-to-1 Mux
Majority Logic
2-Bit Comparator
7-Segment LED Decoder

Sequential Logic
Flip-Flops
SR Flip-Flop
Clocked SR Flip-Flop
Master-Slave Flip-Flop
Edge-Triggered D Flip-Flop
JK Flip-Flop

Counters
4-Bit Ripple Counter
8-Bit Ripple Counter
Synchronous Counter
Decimal Counter
Gray Code Counter
Johnson Counter / Decade Counter

Divide-by-2
Divide-by-3
Traffic Light
Dynamic RAM

555 Timer Chip
555 Square Wave Generator
555 Internals
555 Sawtooth Oscillator
555 Low-duty-cycle Oscillator
555 Monostable Multivibrator
555 Pulse Sequencer
555 Pulse Width Modulator
555 Schmitt Trigger (inverting)
555 Missing Pulse Detector

Transmission Lines
Simple Transmission Lines
Standing Wave on a Transmission Line
Termination of a Transmission Line
Mismatched transmission lines (Pulse)
Mismatched transmission lines (Standing Wave)
Impedance Matching (L-Section)
Impedance Matching (Shunt Stub)
Stub Frequency Response
Low-Pass Filter
Light Switch

Memristors
Memristor
Memristor Response to Sine Wave
Memristor Response to Square Wave
Memristor Response to Triangle Wave
Memristor Hard-Switching 1
Memristor Hard-Switching 2

Tunnel Diodes
Tunnel Diode I/V Curve
Tunnel Diode Relaxation Oscillator

Spark Gaps
Sawtooth Oscillator
Tesla Coil
Marx Generator





java@ falstad.com


circuit.zip > e-amp-diff.html

Differential Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit outputs the difference in voltage between two input
signals. In this case, the first input is a 60 Hz signal, and the
second input is a 60 Hz signal with 120 Hz square wave added in. (In
this simulation, the two signals are added simply by connecting the two
sources in series, which is convenient but not realistic.)

The second input signal is
driving two resistors, which act as a voltage divider, and the + input
of the op-amp is connected between them, where the voltage is equal to
half the second input signal. The op-amp
attempts to keep its & ndash; input at the same voltage as the + input. The two
resistors on top act as a voltage divider, making the & ndash; input
halfway between the first input signal and the op-amp output.

If V + = 1/2 In 2 = V & ndash; = 1/2
(In 1 + output), then the output = In 2 -
In 1 , or the difference between the two inputs.


Next: Summing Amplifier
Previous: Follower
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-logconvert.html

Log Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit outputs the negative log
of the input. The first op-amp attempts to keep its & ndash; input at
ground, which means the current across the 1k resistor must be
proportional to the input voltage. This current goes across a
transistor, so the op-amp must keep its output voltage at a level which
satisfies
the Ebers-Moll equations ,
which means that e V out is proportional to the input
current. This means that output voltage must be proportional to the log of the
input current (and thus the input voltage).

The combination of the second transistor and the current source
adjusts the output voltage upward by a fixed amount, and the second op-amp
amplifies it 16x.


Next: Class-D Amplifier
Previous: Summing Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-passlp.html

Low-Pass Filter passlp




Sorry, you need a Java-enabled browser to see the simulation.






This is a high-pass
filter implemented using a resistor and a capacitor. A
high-pass filter passes
higher frequencies and attenuates lower
frequencies. The
input frequency keeps changing, sweeping up and down the
spectrum to demonstrate the change in response.
The capacitor passes higher frequencies, causing the output voltage to
fluctuate more. Lower frequencies are blocked, and there is
reduced current across the resistor, keeping the
output voltage closer to ground.
The breakpoint (-3 dB point) is
shown at the lower right, as " f.3db " .


Next: Low-Pass Filter (RC)
Previous: High-Pass Filter (RC)
Index








java@ falstad.com
Generated Sat Sep 19 2009


circuit.zip > e-multivib-a.html

Astable Multivibrator (Oscillator)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is an astable multivibrator , or
oscillator .
The two transistors are cross-coupled in such a way that the circuit
switches back and forth between two states. In one state,
the base of
Q1 is about one diode drop above ground, allowing
a base current to flow. This keeps Q1 switched on, in
saturation mode, allowing a current to flow through the collector,
keeping Q1's collector voltage low, and discharging C1.
Q2 is switched off,
because its base voltage is not high enough to switch it on.

As the collector
current into Q1 charges C1, the base
voltage for Q2 goes up, until it is high enough to switch on Q2,
causing a current to flow through its collector, which drops the
collector voltage (the current causes a voltage drop across the
resistor above it). The right side of C2 has dropped, but
the voltage across it hasn't changed, so this
causes Q1's base voltage to drop below ground, switching it off.

Then we get the other half of the cycle, with current flowing through
Q2. This continues until Q1 turns on, and then the cycle repeats.


Next: Monostable Multivibator (One-Shot)
Previous: Bistable Multivibrator (Flip-Flop)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-filt-hipass-l.html

High-Pass Filter (RL)




Sorry, you need a Java-enabled browser to see the simulation.







This is a high-pass
filter implemented using a resistor and an inductor.
The inductor passes lower frequencies, causing the voltage across
it to be reduced and keeping the output voltage closer to
ground. The inductor blocks higher frequencies, causing
reduced current across the resistor and keeping the
output voltage closer to the input voltage.

Below the circuit is the frequency response in
dB for a range
of frequencies. You can click on the frequency response graph to see
the circuit in operation at that particular frequency.


Next: Low-Pass Filter (RL)
Previous: Low-Pass Filter (RC)
Analog Filter Applet
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-transformerdc.html

Transformer w/ DC





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







An ideal transformer (with sufficiently large inductance and
sufficiently low resistance) can pass DC, but real transformers are not ideal
and only work with AC. This transformer passes DC at first, but
after a short time, the DC voltage fades due to resistance in the primary and the
finite inductance of the transformer coils.



Next: Inductive Kickback
Previous: Long Distance Power Transmission
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-inv-osc.html

Inverter Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows how two CMOS inverters can serve
as an oscillator, using feedback.


Next: CMOS NAND
Previous: Inverter Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-cap.html

Capacitor





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This applet shows a simple circuit involving
a capacitor ,
which is a device that stores charge. As current flows into the
capacitor, the voltage across the capacitor increases. As its voltage
approaches the source voltage (the 5V voltage source shown on the
left), the current flowing into the capacitor decreases.

Click on the switch to discharge the capacitor, and then click on it
again to charge it again.

The scope below the circuit shows the voltage across the capacitor in
green, and the current in yellow.


Next: Inductor
Previous: Resistors
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-res-par.html

Parallel Resonance





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows parallel
resonance . The three circuits
have the inductor, resistor, and capacitor in parallel instead of
series. & nbsp; In this case, the
middle circuit is being driven at resonance, which causes the current
there to be lower than in the other two cases (because the impedance of
the circuit is highest at resonance).

Next: High-Pass Filter (RC)
Previous: Series Resonance
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mr-triangle.html

Memristor Response to Triangle Wave





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows a memristor 's
response to a
triangle wave .
The graphs
below the circuit show the memristor's voltage
(in green), current (in yellow), and resistance (in white). A graph of voltage versus
current is also shown.


Next: Memristor Hard-Switching 1
Previous: Memristor Response to Square Wave
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-diodeclip.html

Waveform Clipper





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses a diode to clip the top of an input
triangle wave . Above 5.7 V, current flows through the diode and resistor and
reduces the output voltage proportionally.


Next: Triangle-to-Sine Converter
Previous: AM Detector
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-dtlnand.html

DTL NAND





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an NAND gate
implemented using diode-transistor
logic . Click on the
inputs on the left to toggle their state. When all of the inputs are high,
the output is low; otherwise, the output is high.

When all the inputs are high (3.6 V), the only path to ground through the 4.7k
resistor is through the base of the transistor. So a base current flows. The
transistor wants its collector-emitter current to be 100 times the base current.
By attempting to bring the current up to this level,
it brings the collector voltage down near ground.

When any of the inputs are low (at ground), the easiest path to ground through the 4.7k
resistor is through the low input(s). This brings the bottom of the 4.7k resistor
within one diode drop of ground. At this voltage, very little base current can
flow to the right through both the diode and the base of the transistor.
With no base current, the transistor is off, keeping the output high.


Next: TTL NAND
Previous: RTL NAND
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-powerfactor2.html

Power Factor Correction





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows power
factor correction ; a
capacitor has been added to the circuit, causing far less energy to be
wasted in the power company's wires (aside from an initial spike to
charge the capacitor).


Next: LC Ladder
Previous: Power Factor
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amp-noninvert.html

Noninverting Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit amplifies the input without inverting it, multiplying the voltage by 3, using an
op-amp .
The op-amp attempts to keep its two inputs at the same voltage.
One is at the input voltage, so for the other one to be the same, there must
be a voltage drop across the 1k ohm resistor equal to the input
voltage. The 2k ohm resistor has the same current across it so the
voltage drop must be twice as large, by
Ohm's Law . So the
output voltage is equal to the input plus 2x the input, or a total of
3x the input.


Next: Follower
Previous: Inverting Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-inductac.html

A/C Response of Inductor





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows the response of an inductor when driven by alternating current. Current (in yellow)
and voltage (in green) across the inductor are shown in the scope below the circuit. Note
that current lags voltage; when current starts to flow, the inductor resists it and voltage
across the inductor is at maximum. As the cycle progresses, the inductor voltage goes
to zero, allowing current to reach its peak value.


Next: Caps of Various Capacitances
Previous: A/C Response of Capacitor
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-voltinvert.html

Voltage Inverter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example uses four analog
switches (transmission gates) to invert the input voltage. When the clock is
high, the input voltage charges a capacitor. When the clock is low, the voltage
across this capacitor is used to discharge another capacitor, bringing the
output voltage close to the negative input voltage.


Next: Inverter Amplifier
Previous: Switchable Filter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-zenerref.html

Zener Voltage Reference





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows a Zener diode
used as a voltage reference .
The Zener is reverse-biased, preventing the output voltage from exceeding the Zener
voltage (5.6 V).


Next: Zener Voltage Reference w/ Follower
Previous: Zener I/V Curve
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > setuplist.txt

### setuplist.txt first line must be a comment
+Basics
ohms.txt Ohm's Law
resistors.txt Resistors
cap.txt Capacitor
induct.txt Inductor
& gt; lrc.txt LRC Circuit
voltdivide.txt Voltage Divider
pot.txt Potentiometer
potdivide.txt Potentiometer Divider
thevenin.txt Thevenin's Theorem
norton.txt Norton's Theorem
-
+A/C Circuits
capac.txt Capacitor
inductac.txt Inductor
capmultcaps.txt Caps of Various Capacitances
capmultfreq.txt Caps w/ Various Frequencies
indmultind.txt Inductors of Various Inductances
indmultfreq.txt Inductors w/ Various Frequencies
impedance.txt Impedances of Same Magnitude
res-series.txt Series Resonance
res-par.txt Parallel Resonance
-
+Passive Filters
filt-hipass.txt High-Pass Filter (RC)
filt-lopass.txt Low-Pass Filter (RC)
filt-hipass-l.txt High-Pass Filter (RL)
filt-lopass-l.txt Low-Pass Filter (RL)
bandpass.txt Band-pass Filter
notch.txt Notch Filter
twint.txt Twin-T Filter
crossover.txt Crossover
butter10lo.txt Butterworth Low-Pass (10 pole)
besselbutter.txt Bessel vs Butterworth
ringing.txt Band-pass with Ringing
-
+Other Passive Circuits
+Series/Parallel
indseries.txt Inductors in Series
indpar.txt Inductors in Parallel
capseries.txt Caps in Series
cappar.txt Caps in Parallel
-
+Transformers
transformer.txt Transformer
transformerdc.txt Transformer w/ DC
transformerup.txt Step-Up Transformer
transformerdown.txt Step-Down Transformer
longdist.txt Long-Distance Power Transmission
-
+Relays
relay.txt Relay
relayand.txt Relay AND
relayor.txt Relay OR
relayxor.txt Relay XOR
relaymux.txt Relay Mux
relayff.txt Relay Flip-Flop
relaytff.txt Relay Toggle Flip-Flop
relayctr.txt Relay Counter
-
3way.txt 3-Way Light Switches
4way.txt 3- and 4-Way Light Switches
diff.txt Differentiator
wheatstone.txt Wheatstone Bridge
lrc-critical.txt Critically Damped LRC
currentsrcelm.txt Current Source
inductkick.txt Inductive Kickback
inductkick-snub.txt Blocking Inductive Kickback
powerfactor1.txt Power Factor
powerfactor2.txt Power Factor Correction
grid.txt Resistor Grid
grid2.txt Resistor Grid 2
cube.txt Resistor Cube
+Coupled LC's
coupled1.txt LC Modes (2)
coupled2.txt Weak Coupling
coupled3.txt LC Modes (3)
ladder.txt LC Ladder
-
phaseseq.txt Phase-Sequence Network
lissa.txt Lissajous Figures
-
+Diodes
diodevar.txt Diode
diodecurve.txt Diode I/V Curve
rectify.txt Half-Wave Rectifier
fullrect.txt Full-Wave Rectifier
fullrectf.txt Full-Wave Rectifier w/ Filter
diodelimit.txt Diode Limiter
+Zener Diodes
zeneriv.txt I/V Curve
zenerref.txt Voltage Reference
zenerreffollow.txt Voltage Reference w/ Follower
-
dcrestoration.txt DC Restoration
inductkick-block.txt Blocking Inductive Kickback
spikegen.txt Spike Generator
+Voltage Multipliers
voltdouble.txt Voltage Doubler
voltdouble2.txt Voltage Doubler 2
volttriple.txt Voltage Tripler
voltquad.txt Voltage Quadrupler
-
amdetect.txt AM Detector
diodeclip.txt Waveform Clipper
sinediode.txt Triangle-to-Sine Converter
ringmod.txt Ring Modulator
-
+Op-Amps
opamp.txt Op-Amp
opampfeedback.txt Op-Amp Feedback
+Amplifiers
amp-invert.txt Inverting Amplifier
amp-noninvert.txt Noninverting Amplifier
amp-follower.txt Follower
amp-diff.txt Differential Amplifier
amp-sum.txt Summing Amplifier
logconvert.txt Log Amplifier
classd.txt Class-D Amplifier
-
+Oscillators
relaxosc.txt Relaxation Oscillator
phaseshiftosc.txt Phase-Shift Oscillator
triangle.txt Triangle Wave Generator
sine.txt Sine Wave Generator
sawtooth.txt Sawtooth Wave Generator
vco.txt Voltage-Controlled Oscillator
rossler.txt Rossler Circuit
-
amp-rect.txt Half-Wave Rectifier (inverting)
amp-fullrect.txt Full-Wave Rectifier
peak-detect.txt Peak Detector
amp-integ.txt Integrator
amp-dfdx.txt Differentiator
amp-schmitt.txt Schmitt Trigger
nic-r.txt Negative Impedance Converter
gyrator.txt Gyrator
capmult.txt Capacitance Multiplier
howland.txt Howland Current Source
itov.txt I-to-V Converter
opamp-regulator.txt Voltage Regulator
opint.txt 741 Internals
opint-invert-amp.txt 741 (inverting amplifier)
opint-slew.txt 741 Slew Rate
opint-current.txt 741 Current Limits
-
+Transistors
npn.txt NPN Transistor
pnp.txt PNP Transistor
transswitch.txt Switch
follower.txt Emitter Follower
+Multivibrators
multivib-a.txt Astable Multivib
multivib-bi.txt Bistable Multivib (Flip-Flop)
multivib-mono.txt Monostable Multivib (One-Shot)
-
ceamp.txt Common-Emitter Amplifier
phasesplit.txt Unity-Gain Phase Splitter
schmitt.txt Schmitt Trigger
currentsrc.txt Current Source
currentsrcramp.txt Current Source Ramp
mirror.txt Current Mirror
darlington.txt Darlington Pair
+Differential Amplifiers
trans-diffamp.txt Differential Input
trans-diffamp-common.txt Common-Mode Input
trans-diffamp-cursrc.txt Common-Mode w/Current Source
-
+Push-Pull Follower
pushpullxover.txt Simple, with distortion
pushpull.txt Improved
-
+Oscillators
colpitts.txt Colpitts Oscillator
hartley.txt Hartley Oscillator
eclosc.txt Emitter-Coupled LC Oscillator
-
-
+MOSFETs
nmosfet.txt n-MOSFET
pmosfet.txt p-MOSFET
mosswitch.txt Switch
mosfollower.txt Source Follower
moscurrentsrc.txt Current Source
moscurrentramp.txt Current Ramp
mosmirror.txt Current Mirror
mosfetamp.txt Common-Source Amplifier
cmosinverter.txt CMOS Inverter
cmosinvertercap.txt CMOS Inverter (w/capacitance)
cmosinverterslow.txt CMOS Inverter (slow transition)
cmostransgate.txt CMOS Transmission Gate
mux.txt CMOS Multiplexer
samplenhold.txt Sample-and-Hold
delayrc.txt Delayed Buffer
leadingedge.txt Leading-Edge Detector
switchfilter.txt Switchable Filter
voltinvert.txt Voltage Inverter
invertamp.txt Inverter Amplifier
inv-osc.txt Inverter Oscillator
-
+555 Timer Chip
555square.txt Square Wave Generator
555int.txt Internals
555saw.txt Sawtooth Oscillator
555lowduty.txt Low-duty-cycle Oscillator
555monostable.txt Monostable Multivibrator
555pulsemod.txt Pulse Width Modulator
555sequencer.txt Pulse Sequencer
555schmitt.txt Schmitt Trigger (inverting)
555missing.txt Missing Pulse Detector
-
+Active Filters
filt-vcvs-lopass.txt VCVS Low-Pass Filter
filt-vcvs-hipass.txt VCVS High-Pass Filter
switchedcap.txt Switched-Capacitor Filter
allpass1.txt Allpass
allpass2.txt Allpass w/ Square
-
+Logic Families
+RTL
rtlinverter.txt RTL Inverter
rtlnor.txt RTL NOR
rtlnand.txt RTL NAND
-
+DTL
dtlinverter.txt DTL Inverter
dtlnand.txt DTL NAND
dtlnor.txt DTL NOR
-
+TTL
ttlinverter.txt TTL Inverter
ttlnand.txt TTL NAND
ttlnor.txt TTL NOR
-
+NMOS
nmosinverter.txt NMOS Inverter
nmosinverter2.txt NMOS Inverter 2
nmosnand.txt NMOS NAND
-
+CMOS
cmosinverter.txt CMOS Inverter
cmosnand.txt CMOS NAND
cmosnor.txt CMOS NOR
cmosxor.txt CMOS XOR
cmosff.txt CMOS Flip-Flop
cmosmsff.txt CMOS Master-Slave Flip-Flop
-
+ECL
eclnor.txt ECL NOR/OR
-
+Ternary
3-cgand.txt CGAND
3-cgor.txt CGOR
3-invert.txt Complement (F210)
3-f211.txt F211
3-f220.txt F220
3-f221.txt F221
-
-
+Combinational Logic
xor.txt Exclusive OR
halfadd.txt Half Adder
fulladd.txt Full Adder
decoder.txt 1-of-4 Decoder
mux3state.txt 2-to-1 Mux
majority.txt Majority Logic
digcompare.txt 2-Bit Comparator
7segdecoder.txt 7-Segment LED Decoder
-
+Sequential Logic
+Flip-Flops
nandff.txt SR Flip-Flop
clockedsrff.txt Clocked SR Flip-Flop
masterslaveff.txt Master-Slave Flip-Flop
edgedff.txt Edge-Triggered D Flip-Flop
jkff.txt JK Flip-Flop
-
+Counters
counter.txt 4-Bit Ripple Counter
counter8.txt 8-Bit Ripple Counter
synccounter.txt Synchronous Counter
deccounter.txt Decimal Counter
graycode.txt Gray Code Counter
johnsonctr.txt Johnson Counter
-
divideby2.txt Divide-by-2
divideby3.txt Divide-by-3
ledflasher.txt LED Flasher
traffic.txt Traffic Light
dram.txt Dynamic RAM
-
+Analog/Digital
flashadc.txt Flash ADC
deltasigma.txt Delta-Sigma ADC
hfadc.txt Half-Flash (Subranging) ADC
dac.txt Binary-Weighted DAC
r2rladder.txt R-2R Ladder DAC
swtreedac.txt Switch-Tree DAC
digsine.txt Digital Sine Wave
-
+Phase-Locked Loops
xorphasedet.txt XOR Phase Detector
pll.txt Type I PLL
phasecomp.txt Phase Comparator (Type II)
phasecompint.txt Phase Comparator Internals
pll2.txt Type II PLL
pll2a.txt Type II PLL (fast)
freqdouble.txt Frequency Doubler
-
+Transmission Lines
tl.txt Simple TL
tlstand.txt Standing Wave
tlterm.txt Termination
tlmismatch.txt Mismatched lines (Pulse)
tlmis1.txt Mismatched lines (Standing Wave)
tlmatch1.txt Impedance Matching (L-Section)
tlmatch2.txt Impedance Matching (Shunt Stub)
tlfreq.txt Stub Frequency Response
tllopass.txt Low-Pass Filter
tllight.txt Light Switch
-
+Misc Devices
+JFETs
jfetcurrentsrc.txt JFET Current Source
jfetfollower.txt JFET Follower
jfetfollower-nooff.txt JFET Follower w/zero offset
jfetamp.txt Common-Source Amplifier
volume.txt Volume Control
-
+Tunnel Diodes
tdiode.txt I/V Curve
tdosc.txt LC Oscillator
tdrelax.txt Relaxation Oscillator
-
+Memristors
mr.txt Memristor
mr-sine.txt Sine Wave
mr-square.txt Square Wave
mr-triangle.txt Triangle Wave
mr-sine2.txt Hard-Switching 1
mr-sine3.txt Hard-Switching 2
mr-crossbar.txt Crossbar Memory
-
+Triodes
triode.txt Triode
triodeamp.txt Amplifier
-
+Silicon-Controlled Rectifiers
scr.txt SCR
scractrig.txt AC Trigger
-
+Current Conveyor
cc2.txt CCII+
cc2n.txt CCII-
ccinductor.txt Inductor Simulator
cc2imp.txt CCII+ Implementation
cc2impn.txt CCII- Implementation
cciamp.txt Current Amplifier
ccvccs.txt VCCS
ccdiff.txt Current Differentiator
ccint.txt Current Integrator
ccitov.txt Current-Controlled Voltage Source
-
+Spark Gap
spark-sawtooth.txt Sawtooth Generator
tesla.txt Tesla Coil
spark-marx.txt Marx Generator
-
-
blank.txt Blank Circuit


circuit.zip > e-tlmatch2.html

Impedance Matching (Shunt Stub)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an example of
impedance matching .
Two transmission
lines with different
characteristic impedances are matched with a shunt stub, a
short section of transmission line. This
eliminates standing waves in the first line. On the bottom you see the same
two lines without impedance matching. The power delivered to the load is graphed
for both cases on the bottom. With impedance matching, more power is delivered to
the load.


Next: Stub Frequency Response
Previous: Impedance Matching (L-Section)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-switchfilter.html

Switchable Filter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example uses a multiplexer to create a filter with
a selectable cutoff frequency. The input at lower left controls the cutoff.


Next: Voltage Inverter
Previous: Leading-Edge Detector
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-cmosinverter.html

CMOS Inverter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a CMOS
inverter ,
a logic gate which converts a high input to low and low to high.
Click on the input at left to change its state. When the input is
high, the n- MOSFET on the bottom switches on, pulling the output
to ground. The p-MOSFET on top switches off. When the input is low, the
gate-source voltage on the n-MOSFET is below its threshold, so it
switches off, and the p-MOSFET switches on to pull the output high.


Next: CMOS Inverter (w/capacitance)
Previous: Common-Source Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-cmosmsff.html

CMOS Master-Slave Flip-Flop





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a master-slave flip flop implemented with
CMOS inverters and transmission gates.
When the clock is low, the flip-flop retains its state. The first stage flip-flop,
the master, consists of two inverters at the
upper left which are connected in a positive feedback
configuration so that their outputs do not
change. When the clock goes high, the D input is transmitted to the first stage,
and the second stage (the slave) is connected in positive feedback to ensure
that the output still does not change. When the
clock goes low again, the second stage is set to the same state as the first stage,
changing the output. So the output changes only when the clock has a negative
transition.


Next: Ternary Logic Inverter
Previous: CMOS Flip-Flop
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-555missing.html

555 Missing Pulse Detector





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses a
555 timer
chip to
detect a missing pulse. The input is a square wave. When you click
the logic input (the " L " ) to bring it high, then the input will stop
oscillating and stay high. The 555 will detect this and bring the output low.

The 555 is wired as a monostable .
But
whenever the input goes low, it turns on a transistor which quickly drains
the capacitor. When the input goes high,
the capacitor recharges, but doesn't quite make it
to the threshold voltage before the
input goes low again. If the input stays high, then the capacitor is
allowed to charge fully, and the 555 timing interval ends, bringing
the output low.



Next: Simple Transmission Lines
Previous: 555 Schmitt Trigger (inverting)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tlmismatch.html

Mismatched transmission lines (Pulse)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple circuit showing three mismatched
transmission
lines . The two lines on the end are 75 ohms, and the middle line is 500 ohms. Waves
traveling down the line are reflected at transmission line boundaries.


Next: Mismatched transmission lines (Standing Wave)
Previous: Termination of a Transmission Line
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-lrc.html

RLC Circuit





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an RLC circuit , which is an
oscillating circuit consisting of a resistor, capacitor,
and inductor connected in series. The capacitor is charged initially; the voltage of this charged
capacitor causes a current to flow in the inductor to discharge the capacitor. Once the
capacitor is discharged, the inductor resists any change in the current flow, causing the
capacitor to be charged again with the opposite polarity. The voltage in the capacitor
eventually causes the current flow to stop and then flow in the opposite direction. The result
is an oscillation, or resonance.

The voltages and currents in the inductor, capacitor, and resistor are shown in the scopes below
the circuit (voltage is shown in green, current in yellow). The
resonance frequency depends on the capacitance and inductance in the circuit and is shown in
the lower-right corner (as res.f ).

After a while, the oscillation will die down, because of the resistor. Close the switch
momentarily to get it going again.


Next: Voltage Divider
Previous: Inductor
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-multivib-mono.html

Monostable Multivibator (One-Shot)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a monostable multivibrator , or
one-shot. Click the switch, and Q1's collector goes high (1.7V) for
a short time, and then it goes low again (near ground).

This circuit is similar to the astable
multivibrator , except that one of the capacitors has been
removed so that the oscillator stops after half a cycle.



Next: Colpitts Oscillator
Previous: Astable Multivibrator (Oscillator)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-fullrectf.html

Full-Wave Rectifier w/ Filter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit converts AC to DC using a full-wave
rectifier and a
capacitor to filter the output.


Next: Diode Limiter
Previous: Full-Wave Rectifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-rtlinverter.html

RTL Inverter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an inverter
implemented using resistor-transistor
logic , the earliest form of logic implemented with transistors. Click on the
input on the left to toggle its state. When the input is high, the output is low,
and vice versa.

When the input is high (3.6 V), a current flows from the base to the emitter. The
transistor wants the collector-emitter current to be 100 times the base current, but
it can't, because the collector is connected to the same voltage through a larger
resistor. So, the transistor is in saturation mode; it gets the collector voltage down
to the saturation voltage of 9.7 mV.

When the input is low (at ground), no current flows through the base, so the
transistor is off, and the collector stays at 3.6 V.


Next: RTL NAND
Previous: Emitter-Coupled LC Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-masterslaveff.html

Master-Slave Flip-Flop





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a
master-slave
D flip-flop . A D flip flop takes only a single input, the D (data) input. The master-slave
configuration has the advantage of being edge-triggered, making it easier to use in larger
circuits, since the
inputs to a flip-flop often depend on the state of its output.

The circuit consists of two D flip-flops connected together. When the clock is high,
the D input is stored in the first latch, but the second latch cannot change state. When the clock
is low, the first latch's output is stored in the second latch, but the first latch cannot
change state.

The result is that output can only change state when the clock makes a transition from high to low.


Next: Edge-Triggered D Flip-Flop
Previous: Clocked SR Flip-Flop
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-indmultind.html

Inductors of Various Inductances





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







Here are three circuits which are identical except for the size of the inductors
in them. A larger inductor (higher inductance) has more opposition to
changes in current. The inductor on top is the largest, so the current flow
is smallest in that circuit; the AC source is constantly trying to
change the current, and the large inductor is best at opposing those changes.


Next: Inductors w/ Various Frequencies
Previous: Caps w/ Various Frequencies
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-4way.html

3- and 4-Way Light Switches





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This demonstrates how to wire light switches so that the
light can be turned on and off from three locations. Click on any
of the switches to toggle the light.


Next: Differentiator
Previous: 3-Way Light Switches
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-transformerdown.html

Step-Down Transformer





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







Here we have a transformer with 10 times as many windings in the
primary (on the right) than in the secondary (on the left). As a
result, the voltage in secondary is 1/10th the primary
voltage. (It's not exactly 12V because of resistance in the primary
and imperfect coupling between the two windings.)

If the secondary
were shorted (the resistor replaced with a wire), the primary current
would be much greater, and the secondary current would be 10 times the primary current.


Next: Long Distance Power Transmission
Previous: Step-Up Transformer
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-notch.html

Notch Filter




Sorry, you need a Java-enabled browser to see the simulation.







Also known as a band-stop filter, this one passes a range of frequencies
close to the resonance frequency of the LC pair (shown at the lower right).


Next: Twin-T Filter
Previous: Band-Pass Filter
Analog Filter Applet
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-induct.html

Inductor





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This applet shows a simple circuit involving
an inductor ,
which is a device that resists changes in current flow. When the simulator
starts up, there is 5V across the inductor, and no current. Over
time, the voltage across the inductor decreases, allowing the flow of
current to slowly increase until it acts as a closed circuit; current
flows freely across it.

Click on the switch to " discharge " the inductor (connecting a resistor across its terminals,
which causes the current to go to zero), and then click on it again to reconnect it to the
supply voltage.

The scope below the circuit shows the voltage across the inductor in
green, and the current in yellow.


Next: RLC Circuit
Previous: Capacitor
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-counter.html

4-Bit Ripple Counter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a 4-bit binary
ripple counter .
All the JK flip-flops are configured to toggle their state on a downward transition of their
clock input, and the output of each flip-flop is fed into the next flip-flop's clock. So,
when each bit changes from 1 to 0, it " carries the one " to the next higher bit.


Next: 8-Bit Ripple Counter
Previous: JK Flip-Flop
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-cmosnand.html

CMOS NAND





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows a CMOS
NAND gate . The
output is low whenever both inputs are high, and high otherwise. Click on the inputs
(on the left) to toggle their state.

The MOSFET s act as switches. When
both inputs are high, the n-MOSFETs switch on to connect the output to ground. If either
input is low, the path to ground is cut off, and one of the p-MOSFETs switch on
to connect the output to +5V.


Next: CMOS NOR
Previous: Inverter Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-555square.html

555 Square Wave Generator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple
square wave
oscillator
using a
555 timer chip .

A timing interval starts when the trigger input ( " tr " ) goes lower than 1/3
V in , or 3.33V. When this happens,
the 555 output goes high, and the 555 waits for the threshold input ( " th " ) to
reach 2/3 V in , or 6.67V. As the capacitor charges, the threshold
input slowly rises until it reaches the required level. Then, the timing
interval ends, the output goes low, and the capacitor is discharged through
the " dis " input.

When the capacitor is discharged enough so that the trigger reaches 3.33V,
then a new timing interval begins. The end result is a square wave.


Next: 555 Internals
Previous: Dynamic RAM
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amp-schmitt.html

Schmitt Trigger





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is
a Schmitt
Trigger , a type of comparator. It measures the input to see
if it is above or below a certain threshold. The threshold varies to
make it less likely that the output will switch rapidly back and forth
due to a noisy input near the threshold.

The input is a noisy 40 Hz sine wave, shown in the first scope. The
threshold is shown in the second scope. The third scope is a graph of
the output versus input. Note that the threshold goes down whenever
the input rises above it, and vice versa.

The two 10k resistors form a voltage divider that put the threshold voltage
(the + input of the op-amp) at 5 V. But, the output of the op-amp is also connected
to the threshold input through a 100k resistor. This causes the
threshold to be raised or lowered slightly depending on the op-amp output.


Next: Relaxation Oscillator
Previous: Differentiator (inverting)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-that.html

shifts their input by 180 degrees at the oscillation




Sorry, you need a Java-enabled browser to see the simulation.






frequency. The output of this filter goes into an inverting
amplifier, and the output of this amplifier goes back into the filter, providing
positive feedback at the oscillation frequency.


Next: Phase-Shift Oscillator Filter
Previous: Phase-Shift Oscillator
Index








java@ falstad.com
Generated Sat Sep 19 2009


circuit.zip > e-cmosxor.html

CMOS XOR





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows a CMOS
XOR gate . The
output is high whenever exactly one of the inputs is high,
and low otherwise. Click on the inputs
(on the left) to toggle their state.

When the first input is high, the two
MOSFET s on the left
act as an inverter, inverting the second input. The two MOSFETs on the right
form a transmission gate which is closed when
the first input is low, transmitting the second input to the output unchanged.


Next: CMOS Flip-Flop
Previous: CMOS NOR
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-cappar.html

Capacitors in Parallel





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This demonstrates that the capacitance of two
capacitors
in parallel
is equal to the sum of the two separate capacitances. (The 10m (10 milliohm) resistor
is there to get around a problem with the simulator.)



Next: Thevenin's Theorem
Previous: Capacitors in Series
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-peak-detect.html

Peak Detector





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit outputs the peak voltage of the input. The capacitor
stores the current peak voltage. If the input voltage is larger, the
op-amp output goes positive until the capacitor is charged up to the
new peak value. If the input voltage is smaller, the diode keeps the
capacitor from being discharged. The second op-amp acts as a
buffer .

Click the reset switch to discharge the capacitor and reset the peak
value to zero.


Next: Integrator (inverting)
Previous: Full-Wave Rectifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-transformer.html

Transformer





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows a simple transformer
circuit. A transformer is a device used to transfer electrical energy
from one circuit to another using two coils that are coupled inductively.
Current in one coil induces a current in the opposite direction in
the other coil.


Next: Step-Up Transformer
Previous: Current Source
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-jkff.html

JK Flip-Flop





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a
JK flip-flop . It only changes when the clock transitions from high to low. The inputs
(labelled J and K) are shown on the left. When
J = K = 0, it holds its present state. When J = 1, K = 0, the output is set to high. When
J = 0, K = 1, the output is set to low. When J = K = 1, the output is toggled from
high to low (or low to high).


Next: 4-Bit Ripple Counter
Previous: Edge-Triggered D Flip-Flop
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-3way.html

3-Way Light Switches





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This demonstrates how a 3-way light switch is wired. This allows a
light to be turned on and off from two locations. Click on any of the
switches to toggle the light.


Next: 3- and 4-Way Light Switches
Previous: Crossover
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-divideby3.html

Divide-by-3





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows how two D flip-flops can be used to divide the frequency of a clock
signal by 3.


Next: Traffic Light
Previous: Divide-by-2
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-lrc-critical.html

Critically Damped RLC





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows an RLC circuit that
is critically
damped , which means that the resistance is selected so that it
will stop oscillating as quickly as possible.


Next: Current Source
Previous: Wheatstone Bridge
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-bandpass.html

Band-Pass Filter




Sorry, you need a Java-enabled browser to see the simulation.







This filter passes a range of frequencies
close to the resonance frequency of the LC pair (shown at the lower
right). When it gets
close to the resonance frequency ,
the impedance
of the LC pair increases, keeping the output closer to the input.
You can click on the frequency response graph to see
the circuit in operation at that particular frequency.


Next: Notch Filter
Previous: Low-Pass Filter (RL)
Analog Filter Applet
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-555schmitt.html

555 Schmitt Trigger (inverting)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is
a Schmitt
Trigger , a type of comparator, built using a
555 timer
chip
for some reason. It measures the input to see
if it is above or below a certain threshold. The threshold varies to
make it less likely that the output will switch rapidly back and forth
due to a noisy input near the threshold.

This circuit uses the fact that a 555 output goes high when the
trigger input goes below 1/3 V in , and the output goes low
when the threshold input goes above 2/3 V in .


Next: 555 Missing Pulse Detector
Previous: 555 Pulse Width Modulator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-opamp.html

Op-Amp





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple demonstration of an
op-amp .
It has two inputs, which you can control using the sliders on the
right. The op-amp greatly amplifies the difference between the two
inputs, and outputs the result. The output voltage cannot swing
beyond the op-amp's high and low supply voltages (+15V and -15V in
this case). The wires providing the supply voltage are not shown;
instead, the high and low output voltage can be specified using the
right-mouse Edit menu.


Next: Op-Amp Feedback
Previous: Triangle-to-Sine Converter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-howland.html

Howland Current Source





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows a current source. The current through the load
is the same regardless of the position of the switch.

The op-amp attempts to keep the voltages at both terminals the same, so V & ndash; =
V + . Call V 1 the voltage across R 1 , and I 1 the current
across R 1 . Then V 2 = V 4 . Since I 1 = I 2 and
R 1 = R 2 , V 1 = V 2 = V 4 .

V & ndash; = V + = V 1 - 5V

I 3 = V + /R 3 = (V 1 - 5V)/R 3 .

I 4 = I 3 + I load .

I 4 = V 4 /R 4 = V 1 /R 3 .

V 1 /R 3 = (V 1 - 5V)/R 3 + I load

I load = 5V / R 3 = 1.67 mA


Next: Current-to-Voltage Converter
Previous: Capacitance Multiplier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-invertamp.html

Inverter Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows how a CMOS inverter can be used
as an amplifier. The inverter has a large (negative) gain when its input is
biased to 2.5 V. With
the output connected to the input, this circuit amplifies its input 150x.


Next: Inverter Oscillator
Previous: Voltage Inverter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-sinediode.html

Triangle-to-Sine Converter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses a series of diodes to clip the top of an input
triangle wave so that it looks more like a sine wave. Like the last
example , each diode clips the top of the input waveform. The diodes are paired to
clip both the negative and positive portions of the wave, and multiple pairs are used
to better approximate a sine wave. A long voltage divider selects
the clipping voltages.



Next: Op-Amp
Previous: Waveform Clipper
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mr.html

Memristor





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows a memristor , a
recently discovered device. It acts as a resistor, but the resistance varies depending on
the current over time. In this example, use the slider at right to select the input voltage. The
memristor has a high resistance at first, but current flow causes the resistance to decrease over
time until it hits a minimum value. If you set the input voltage to a negative value, then the
resistance will gradually increase until it hits a maximum value. A graph of the memristor's
voltage, current, and resistance is shown below the circuit.


Next: Memristor Response to Sine Wave
Previous: Light Switch
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-moscurrentramp.html

Current Ramp





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses a current source to
generate a voltage ramp whenever the switch is closed.


Next: Current Mirror
Previous: Current Source
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mr-sine2.html

Memristor Hard-Switching 1





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows a memristor 's
response to a sine wave. The graphs below the circuit show the memristor's voltage
(in green), current (in yellow), and resistance (in white). A graph of voltage versus
current is also shown. In this case, the voltage swings are large enough (relative to time)
that the memristor hits its minimum resistance value, causing spikes in current.


Next: Memristor Hard-Switching 2
Previous: Memristor Response to Triangle Wave
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-diodecurve.html

Diode I/V Curve





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows the I/V curve of a diode . With a resistor, I
(current) and V (voltage) are proportional (by Ohm's Law). With a
diode, I and V have an exponential relationship. At the lower left, voltage
is shown in green, and current in yellow. At the lower right is a
graph of current versus voltage (the I/V curve).


Next: Half-Wave Rectifier
Previous: Diode
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-delayrc.html

Delayed Buffer





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example uses two CMOS inverters and a low-pass
filter to form a delayed buffer. Changes in the input appear on the output, delayed
about 10 microseconds.


Next: Leading-Edge Detector
Previous: Sample-and-Hold
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-555monostable.html

555 Monostable Multivibrator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a monostable multivibrator , or
one-shot, made with a
555 timer chip .
Click the logic input on the left (the " H " ),
and the output goes high
for a short time, and then it goes low again.

A timing interval starts when the trigger input ( " tr " ) is brought low.
When this happens,
the 555 output goes high. This causes the capacitor to be charged
until it reaches 3.3V. Then, the timing
interval ends, the output goes low, and the capacitor is discharged through
the " dis " input.

The capacitor in front of the trigger input causes the monostable to
be negative-edge triggered. If the capacitor is replaced with a wire, and the
logic input is held low too long, then the 555's output will start
to oscillate.


Next: 555 Pulse Sequencer
Previous: 555 Low-duty-cycle Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-moscurrentsrc.html

Current Source





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This shows
a current
source , a device that absorbs a
constant amount of current (22.5mA in this case), regardless of the position
of the switch. The MOSFET is in saturation, so the current across it
is determined by the gate-source voltage, which is constant.


Next: Current Ramp
Previous: Source Follower
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-inductkick.html

Inductive Kickback





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







In this circuit, we have a switch that
controls the supply of current to an inductor. & nbsp; An inductor resists any changes in current. & nbsp; If you open the switch, the
inductor tries to maintain the same current; it does this by charging the
capacitance between the contacts of the switch. & nbsp; (Any two wires in close proximity have some parasitic
capacitance between them.) & nbsp;
There is a small capacitor (much larger than the actual value)
across the switch terminals to simulate this. & nbsp; When you open the switch, the voltage goes very high;
in real life, this would cause arcing.


Next: Blocking Inductive Kickback
Previous: Transformer w/ DC
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-pushpull.html

Improved Push-Pull Follower





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a Class B
amplifier, or push-pull follower. There is no voltage gain, but it amplifies current.

One drawback of the simple class B push-pull is
crossover distortion . This
example is a big improvement over the previous example .

In the last example, each half of the circuit conducts over half the waveform. In this example,
each half conducts a small amount on the other half. This improves linearity
(reducing crossover distortion), but it's not quite as efficient; when there
is no output, it still draws current.


Next: Bistable Multivibrator (Flip-Flop)
Previous: Simple Push-Pull Follower, with Distortion
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-7segdecoder.html

7-Segment LED Decoder





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit inputs a 4-digit binary number and outputs a decimal digit 0 to 9 using a
7-segment LED display . If
a number larger than 9 is input, then the display is blank.

Thanks to Mateusz Baran for contributing this circuit.



Next: SR Flip-Flop
Previous: 2-Bit Comparator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mirror.html

Current Mirror





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a current mirror ,
a device that uses the current in one half of the circuit to control the current
flow in the other half. The current is the same in both halves. The switch on
the left changes the current flow in the left half, which is mirrored in the
right half. The switch on the right causes the resistor to be bypassed, but the
current mirror ensures that the flow of current does not change.

Q1's emitter-base junction acts like a diode. The current through it
is set by the resistor network below it. Wiring the base to the
collector ensures that the base current can flow, so the transistor
can stay in the active mode. Since Q1's base is wired to Q2's, they
are at the same voltage, so Q2's emitter-base junction must have the
same amount of current flowing through it. (It acts like a diode, so
the current is determined by the voltage across it.)

Both halves of the circuit have nearly the same current flowing
through them. The only difference is that the base
currents from Q1 and Q2 flow through the left half, and not the
right half. We use high-beta transistors in this circuit to make
these base currents as small as possible.


Next: Differential Amplifier
Previous: Current Source Ramp
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-phaseseq.html

Phase-Sequence Network





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit generates a
series of sine waves with a phase difference of 90°.


Next: Diode
Previous: LC Ladder
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-colpitts.html

Colpitts Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a Colpitts
oscillator , an oscillator that
uses an LC
circuit combined with a
transistor
for feedback.

With the transistor removed, the inductor and two capacitors form a
resonant circuit, like the LRC example . Current moves back and
forth as the capacitors charge and discharge through the inductor. The transistor
amplifies this oscillation and prevents it from dying out.

The transistor cannot conduct until C1 is charged to about 680mV. When the transistor is
off, the output is around 4.5 V. Current from the 1k resistor and the inductor charges C2.
The current through
the inductor slows and then reverses, charging C1 again. When it is charged, the
transistor conducts, bringing the output low. As the oscillation continues, the
transistor turns off again. Current through the 1k resistor keeps the oscillation going.


Next: Hartley Oscillator
Previous: Monostable Multivibator (One-Shot)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-indmultfreq.html

Inductors w/ Various Frequencies





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







Here are three circuits which are identical except for the frequency of the source.
Inductors are able to " pass " lower frequencies more easily than higher
ones, because they oppose changes in current, and low frequency AC has
more gradual changes, giving the inductor a chance to adjust. The higher frequency of the
bottom circuit results in a lower current.


Next: Impedances of Same Magnitude
Previous: Inductors of Various Inductances
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mux3state.html

2-to-1 Mux





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a 2-to-1 multiplexer. It selects one of two inputs (based on the select input at the bottom right) and
outputs it at the bottom. It uses two tri-state buffers; the implementation of each
buffer is shown in full. When the select input is low,
input 1 is used. The buffer on the left is switched on, and the buffer on the right is
put in a high-impedance state where it does not have any effect on the output. When select
input is high, input 2 is used.


Next: Majority Logic
Previous: 1-of-4 Decoder
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-rectify.html

Half-Wave Rectifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses a diode ,
a device that conducts current in only one
direction. It takes AC input and
" rectifies " it so that the negative portion of the output is removed.


Next: Full-Wave Rectifier
Previous: Diode I/V Curve
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-relaxosc.html

Relaxation Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is
an oscillator
that generates a square wave . The op-amp
starts with its two inputs in an unknown state; let's say it starts
with + slightly higher than & ndash;. The op-amp greatly amplifies
this difference, bringing its output to the op-amp's
positive power supply voltage, its maximum output (15 V in this
case). The two 100k resistors act as a voltage divider which put the +
input at half the output voltage, or 7.5 V. The & ndash; input is at
ground, lower than the + input, so the op-amp output stays at 15 V.

Current flows from the op-amp output to ground through the capacitor,
charging it. As soon as it charges to slightly more than 7.5 V, the
& ndash; input is now higher than the +, and so the output flips to -15
V. This brings the + input to -7.5 V.

Now current flows in the other direction, discharging the capacitor
and reversing its polarity until it reaches -7.5 V. Then the cycle repeats.


Next: Triangle Wave Generator
Previous: Schmitt Trigger
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-decoder.html

1-of-4 Decoder





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit inputs a two-digit binary number and uses it to bring one of four outputs high.


Next: 2-to-1 Mux
Previous: Full Adder
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-to.html

form a leading edge detector. When the input makes a positive transition,




Sorry, you need a Java-enabled browser to see the simulation.






the output goes high briefly and then goes back to low.


Next: Switchable Filter
Previous: Leading-Edge Detector
Index








java@ falstad.com
Generated Sat Sep 19 2009


circuit.zip > filt-lopass.txt

$ 1 5.0E-6 6.499443210467817 50 5.0 50
O 400 160 512 160 0
g 400 288 400 320 0
r 240 160 400 160 0 187.0
c 400 160 400 288 0 1.0E-5 0
170 240 160 208 160 3 20.0 1000.0 5.0 0.1
o 4 32 0 34 5.0 9.765625E-5 0 -1
o 0 32 0 34 5.0 9.765625E-5 1 -1
h 3 2 3


circuit.zip > amp-noninvert.txt

$ 1 5.0E-6 10 57 5.0
v 96 256 96 112 0 1 40.0 5.0 0.0
g 96 256 96 304 0
w 192 208 192 256 0
a 192 192 336 192 1
w 336 192 336 256 0
r 192 256 336 256 0 2000.0
r 96 256 192 256 0 1000.0
w 96 112 192 112 0
w 192 112 192 176 0
O 336 192 400 192 0
o 0 64 0 2 5.0 9.765625E-5
o 9 64 0 2 10.0 9.765625E-5


circuit.zip > peak-detect.txt

$ 1 5.0E-6 10 50 5.0
a 128 144 256 144 1
a 304 160 432 160 1
d 256 144 272 144 0
w 272 144 304 144 0
w 304 176 304 208 0
w 304 208 432 208 0
w 432 208 432 160 0
w 128 160 128 192 0
w 272 144 272 192 0
c 272 192 272 288 0 1.0E-5 0.0026623988117427983
g 272 288 272 320 0
g 32 288 32 320 0
w 128 64 128 128 0
v 32 288 32 176 0 1 40.0 5.0 0.0
v 32 176 32 64 0 1 110.0 3.0 0.0
w 128 192 224 192 0
w 224 192 272 192 0
s 224 192 224 288 0 true true
r 224 288 272 288 0 10.0
w 32 64 80 64 0
w 80 64 128 64 0
p 80 64 80 288 0
w 32 288 80 288 0
O 432 160 480 160 0
x 161 247 177 247 0 20 reset
o 21 32 0 2 10.0 9.765625E-5 0 input
o 23 64 0 2 10.0 9.765625E-5 1 peak


circuit.zip > relayand.txt

$ 1 5.0E-6 10.20027730826997 44 5.0 50
178 160 176 240 176 0 1 0.1 8.400979594570726E-14 0.05 1000000.0 0.02 50.0
178 304 176 384 176 0 1 0.1 2.3377800273993248E-7 0.05 1000000.0 0.02 50.0
178 448 176 528 176 0 1 0.1 1.5717284793725733E-19 0.05 1000000.0 0.02 50.0
R 160 176 112 176 0 0 40.0 5.0 0.0 0.0 0.5
w 240 192 304 192 0
w 304 176 304 192 0
w 384 192 448 192 0
w 448 176 448 192 0
g 160 224 160 256 0
g 304 224 304 256 0
g 448 224 448 256 0
w 160 208 128 208 0
w 304 208 272 208 0
w 448 208 416 208 0
L 128 208 128 288 0 0 false 5.0 0.0
L 272 208 272 288 0 0 false 5.0 0.0
L 416 208 416 288 0 0 false 5.0 0.0
M 528 192 576 192 0 2.5
r 528 192 528 272 0 100.0
g 528 272 528 288 0


circuit.zip > capac.txt

$ 1 5.0E-6 14.3 55 5.0
v 176 256 176 80 0 1 40.0 5.0 0.0
r 176 80 336 80 0 180.0
c 336 80 336 256 0 3.3E-5 0.20495321439656933
w 176 256 336 256 0
o 2 64 0 3 5.0 0.05


circuit.zip > currentsrcelm.txt

$ 1 5.0E-6 10 50 5.0
w 112 32 208 32 0
w 208 32 304 32 0
w 304 32 400 32 0
s 208 32 208 112 0 false false
s 304 32 304 112 0 true false
r 208 112 208 176 0 100.0
r 304 112 304 176 0 400.0
r 400 112 400 176 0 4000.0
w 208 176 304 176 0
w 304 176 400 176 0
w 304 208 304 176 0
w 304 208 400 208 0
w 304 208 208 208 0
s 304 208 304 288 0 false false
r 208 288 208 352 0 600.0
r 304 288 304 352 0 200.0
s 400 208 400 352 0 false false
w 112 352 208 352 0
w 208 352 304 352 0
w 304 352 400 352 0
i 112 352 112 32 0
g 112 352 112 384 0
w 400 32 400 112 0
w 208 208 208 288 0
o 20 32 0 3 5.0 0.05


circuit.zip > capmultfreq.txt

$ 1 5.0E-6 10 54 5.0 50
v 224 144 224 80 0 1 15.0 5.0 0.0
r 224 80 384 80 0 200.0
c 384 80 384 144 0 2.9999999999999997E-5 0.4703928719421789
w 224 144 384 144 0
v 224 240 224 176 0 1 40.0 5.0 0.0
r 224 176 384 176 0 200.0
w 224 240 384 240 0
c 384 176 384 240 0 2.9999999999999997E-5 2.2457974270921146
v 224 336 224 272 0 1 80.0 5.0 0.0
w 224 336 384 336 0
c 384 272 384 336 0 2.9999999999999997E-5 -1.4536204423595571
r 224 272 384 272 0 200.0
o 2 64 0 17 2.5 0.05 0
o 7 64 0 17 2.5 0.05 1
o 10 64 0 17 2.5 0.05 2


circuit.zip > powerfactor1.txt

$ 13 5.0E-6 10 47 120.0 28
v 176 304 176 128 2 1 60.0 120.0 0.0
r 304 128 448 128 0 10.0
w 176 304 304 304 0
l 448 128 448 304 0 5.0 0
w 304 304 448 304 0
r 176 128 304 128 0 50.0
o 5 64 1 3 0.3125 9.765625E-5 0
o 1 64 1 3 0.078125 2.44140625E-5 1
o 3 64 1 3 5.0 9.765625E-5 2


circuit.zip > potdivide.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
174 320 352 384 96 0 1000.0 0.5 Resistance
v 240 352 240 96 0 0 40.0 5.0 0.0 0.0 0.5
w 240 96 320 96 0
w 240 352 320 352 0
O 320 96 432 96 1
O 384 224 432 224 1
O 320 352 432 352 1


circuit.zip > tllopass.txt

$ 1 5.0E-13 11.708435524800691 50 5.0 50
170 64 80 32 80 2 2.0E9 8.0E9 5.0 1.0E-8
171 144 176 256 176 0 3.125E-11 64.9 48 0.0
171 144 80 256 80 0 3.125E-11 217.5 48 0.0
w 128 128 128 224 0
w 128 224 144 224 0
w 128 128 144 128 0
171 304 80 400 80 0 3.125E-11 217.5 48 0.0
171 304 176 400 176 0 3.125E-11 70.3 48 0.0
171 448 176 544 176 0 3.125E-11 64.9 48 0.0
w 256 80 272 80 0
w 272 80 272 176 0
w 272 176 304 176 0
w 256 128 288 128 0
w 288 128 288 224 0
w 288 224 304 224 0
w 272 80 304 80 0
w 288 128 304 128 0
w 400 80 416 80 0
w 416 80 416 176 0
w 416 176 448 176 0
w 400 128 432 128 0
w 432 128 432 224 0
w 432 224 448 224 0
g 256 224 256 240 0
g 400 224 400 240 0
g 544 224 544 240 0
w 416 80 464 80 0
w 432 128 464 128 0
r 464 80 464 128 0 50.0
g 256 128 256 144 0
g 144 224 144 240 0
r 64 80 112 80 0 50.0
w 112 80 112 176 0
w 112 176 144 176 0
w 112 80 144 80 0
o 28 64 0 35 5.0 0.1 0 -1


circuit.zip > transformerup.txt

$ 1 5.0E-6 9 43 5.0 42
v 176 272 176 144 0 1 60.0 10.0 0.0
w 352 224 352 272 0
T 272 192 352 192 0 1.0 10.0 0.14177509724862508 -0.008963174444486828
w 272 192 272 144 1
w 272 224 272 272 0
r 272 144 176 144 0 0.1
w 176 272 272 272 0
w 352 272 448 272 0
w 352 144 448 144 0
r 448 144 448 272 0 2000.0
w 352 192 352 144 1
o 0 64 0 3 10.0 0.8 0
o 9 64 0 3 160.0 0.05 1


circuit.zip > tlterm.txt

$ 1 5.0E-12 14.304574186067095 50 5.0 50
171 112 32 528 32 0 1.0E-8 75.0 64 0.0
r 112 32 64 32 0 75.0
w 64 96 112 96 0
w 528 32 560 32 0
w 528 96 560 96 0
r 560 32 560 96 0 75.0
v 64 96 64 32 0 2 1.0E7 2.5 2.5 0.0 0.03
g 528 96 528 112 0
171 112 144 528 144 0 1.0E-8 75.0 64 0.0
r 112 144 64 144 0 75.0
w 64 208 112 208 0
w 528 144 560 144 0
w 528 208 560 208 0
r 560 144 560 208 0 10000.0
v 64 208 64 144 0 2 1.0E7 2.5 2.5 0.0 0.03
g 528 208 528 224 0
171 112 256 528 256 0 1.0E-8 75.0 64 0.0
r 112 256 64 256 0 75.0
w 64 320 112 320 0
w 528 256 560 256 0
w 528 320 560 320 0
r 560 256 560 320 0 10.0
v 64 320 64 256 0 2 1.0E7 2.5 2.5 0.0 0.03
g 528 320 528 336 0
171 112 368 528 368 0 1.0E-8 75.0 64 0.0
r 112 368 64 368 0 10.0
w 64 432 112 432 0
w 528 368 560 368 0
w 528 432 560 432 0
r 560 368 560 432 0 10000.0
v 64 432 64 368 0 2 1.0E7 2.5 2.5 0.0 0.03
g 528 432 528 448 0


circuit.zip > zeneriv.txt

$ 1 5.0E-6 10.634267539816555 40 2.0 50
R 320 208 320 160 0 3 50.0 3.55 -2.56 0.0 0.5
g 320 288 320 320 0
z 320 208 320 288 1 0.805904783 5.6
o 2 64 0 99 10.0 25.6 0 -1
o 2 64 0 35 10.0 25.6 1 -1


circuit.zip > rtlinverter.txt

$ 1 5.0E-6 10 52 5.0
r 240 224 320 224 0 470.0
t 320 224 368 224 0 1 0.6381869044881298 0.6478945398933037
r 368 208 368 112 0 640.0
w 368 240 368 288 0
L 240 224 192 224 0 false false 3.6 0.0
R 368 112 320 112 0 0 40.0 3.6 0.0
M 368 208 432 208 0
g 368 288 368 320 0


circuit.zip > darlington.txt

$ 1 5.0E-6 10.20027730826997 56 5.0 50
t 368 288 400 288 0 1 -4.687537934791563 0.09853954519174213 100.0
r 304 112 304 208 0 2000000.0
s 304 208 304 288 0 1 false
w 304 112 448 112 0
r 448 112 448 224 0 300.0
w 448 320 448 384 1
t 400 304 448 304 0 1 -4.786077479983305 0.2139223639566944 100.0
w 400 272 400 224 0
w 400 224 448 224 0
w 448 224 448 288 0
w 368 288 304 288 1
R 304 112 240 112 0 0 40.0 5.0 0.0 0.0 0.5
g 448 384 448 400 0


circuit.zip > inductkick-block.txt

$ 1 5.0E-6 10 50 5.0 42
v 176 304 176 128 0 0 40.0 5.0 0.0
w 176 304 224 304 0
w 336 304 288 304 0
s 224 304 288 304 0 false false
w 288 304 288 336 0
w 224 304 224 336 0
c 224 336 288 336 0 5.0E-10 -0.0
l 176 128 336 128 0 1.0 0
r 336 128 336 304 0 100.0
w 176 128 176 80 0
w 336 128 336 80 0
d 336 80 176 80 0


circuit.zip > phasecompint.txt

$ 1 5.0E-6 10 53 5.0
155 128 96 144 96 2 0.0
155 128 256 160 256 2 0.0
w 224 96 400 96 0
w 400 96 400 192 0
w 224 256 400 256 0
w 400 256 400 224 0
f 400 256 464 256 4
f 416 160 464 160 5
w 224 160 416 160 0
w 464 176 464 208 0
w 464 208 464 240 0
g 464 272 464 320 0
R 464 144 464 80 0 0 40.0 5.0 0.0
R 128 128 48 128 0 2 120.0 2.5 2.5
R 128 288 48 288 0 2 115.0 2.5 2.5
R 128 96 96 96 0 0 40.0 5.0 0.0
R 128 256 96 256 0 0 40.0 5.0 0.0
w 128 208 128 160 0
w 304 208 304 352 0
w 304 352 128 352 0
w 128 352 128 320 0
w 464 208 528 208 0
r 528 208 528 144 0 1000.0
r 528 208 528 272 0 1000.0
R 528 144 528 80 0 0 40.0 5.0 0.0
g 528 272 528 320 0
O 528 208 576 208 0
w 128 208 304 208 0
150 400 208 304 208 0 2 0.0
o 13 64 0 6 5.0 9.765625E-5 0
o 14 64 0 6 5.0 9.765625E-5 0
o 26 64 0 6 5.0 9.765625E-5 0


circuit.zip > cmosff.txt

$ 0 5.0E-6 10 50 5.0
f 160 80 208 80 5
f 160 176 208 176 4
w 208 96 208 128 0
w 208 128 208 160 0
f 160 240 208 240 4
w 208 192 208 224 0
g 208 256 208 288 0
w 160 80 160 176 0
f 80 80 128 80 5
w 128 32 128 64 0
w 128 32 208 32 0
w 208 32 208 64 0
R 128 32 80 32 0 0 40.0 5.0 0.0
w 80 80 80 240 0
w 80 240 160 240 0
L 160 176 32 176 0 false true
w 128 96 128 128 0
w 128 128 208 128 0
w 288 240 288 176 0
w 288 176 288 80 0
f 288 80 336 80 5
f 368 80 416 80 5
w 336 96 336 128 0
w 336 128 416 128 0
w 416 96 416 128 0
w 336 64 336 32 0
w 416 64 416 32 0
w 416 32 336 32 0
w 208 32 336 32 0
w 368 80 368 176 0
f 368 176 416 176 4
f 368 240 416 240 4
w 416 192 416 224 0
w 416 128 416 160 0
w 368 240 288 240 0
g 416 256 416 288 0
L 288 240 288 288 0 false true
w 416 128 464 128 0
w 464 128 464 336 0
w 464 336 80 336 0
w 80 336 80 240 0
w 368 176 240 176 0
w 208 128 240 128 0
w 240 128 240 176 0
M 240 176 240 368 0
M 464 336 464 368 0
x 281 328 297 328 0 24 R
x 26 151 42 151 0 24 S
x 202 378 218 378 0 24 Q
x 422 380 438 380 2 24 Q


circuit.zip > nmosinverter2.txt

$ 1 5.0E-6 11.251013186076355 50 5.0 50
f 320 208 384 208 6 3.5
f 320 288 384 288 6 1.5
R 256 144 208 144 0 0 40.0 5.0 0.0 0.0 0.5
w 256 144 320 144 0
w 320 144 320 208 0
w 320 144 384 144 0
w 384 144 384 192 0
w 384 224 384 272 0
g 384 304 384 336 0
L 320 288 272 288 0 1 false 5.0 0.0
M 384 224 432 224 0 2.5


circuit.zip > amp-follower.txt

$ 1 5.0E-6 10.391409633455755 57 5.0 50
v 96 224 96 80 0 1 40.0 5.0 0.0 0.0 0.5
g 96 224 96 272 0
w 192 176 192 224 0
a 192 160 320 160 1 15.0 -15.0
w 320 160 320 224 0
w 96 80 192 80 0
w 192 80 192 144 0
w 192 224 320 224 0
O 384 160 432 160 0
w 320 160 384 160 0
r 384 160 384 224 0 1000.0
g 384 224 384 272 0
o 0 64 0 34 5.0 9.765625E-5 0 -1
o 8 64 0 34 5.0 9.765625E-5 1 -1


circuit.zip > blank.txt

$ 1 5.0E-6 10 50 5.0


circuit.zip > amp-schmitt.txt

$ 1 5.0E-6 10 66 5.0
a 320 208 432 208 0 15.0 -15.0
w 432 208 432 272 0
r 432 272 288 272 0 100000.0
w 288 224 320 224 0
w 288 224 288 272 0
w 288 224 288 144 0
r 288 144 288 80 0 10000.0
r 288 272 288 336 0 10000.0
g 288 336 288 368 0
O 432 208 480 208 0
R 288 80 288 48 0 0 40.0 10.0 0.0
w 320 192 224 192 0
v 224 192 160 192 0 1 40.0 5.0 0.0
R 160 192 128 192 0 1 1000.0 1.0 5.0
p 224 192 224 336 0
w 224 336 256 336 0
w 256 336 288 336 0
p 256 224 256 336 0
w 256 224 288 224 0
o 14 32 0 2 11.0 9.765625E-5 0 in
o 17 64 0 2 11.0 9.765625E-5 1 threshold
o 14 64 0 226 20.0 25.6 2 9 out vs in


circuit.zip > crossover.txt

$ 0 5.0E-6 10.812258501325767 50 5.0 50
170 208 48 160 48 3 100.0 20000.0 5.0 0.25
l 208 48 304 48 0 0.00212 -0.08881265679389214
c 304 48 304 112 0 5.9999999999999995E-5 -0.2894173322846854
l 304 48 400 48 0 7.0E-4 -0.0064227679597185445
r 400 48 400 112 0 5.6
g 304 112 304 128 0
g 400 112 400 128 0
w 208 48 208 176 0
c 208 176 272 176 0 2.1E-5 -0.8398710078174956
c 272 176 336 176 0 6.3E-5 0.090455613711665
l 336 176 400 176 0 2.4E-4 0.6844180361930992
l 400 176 464 176 0 8.0E-5 0.6610256500586136
l 272 176 272 256 0 0.00151 0.030771262133821843
c 400 176 400 256 0 3.3199999999999996E-6 5.438742670954392
r 464 176 464 256 0 8.0
g 272 256 272 272 0
g 400 256 400 272 0
g 464 256 464 272 0
w 208 176 208 320 0
c 208 320 304 320 0 2.37E-6 4.767372700629853
c 304 320 400 320 0 7.099999999999999E-6 -0.16235412775659708
l 304 320 304 400 0 1.5E-4 0.09052584171628873
g 304 400 304 416 0
r 400 320 400 400 0 5.6
g 400 400 400 416 0
o 4 8 0 50 5.1 1.6 0 -1 low
o 14 4 0 50 10.0 0.8 1 -1 mid
o 23 4 0 50 5.1 0.8 2 -1 high


circuit.zip > pll.txt

$ 1 5.0E-6 16.13108636308289 65 5.0 50
158 432 224 464 224 0
c 528 224 528 256 0 1.0E-6 0
r 528 288 592 288 0 4000.0
r 528 320 592 320 0 100000.0
w 592 288 592 320 0
g 592 320 592 352 0
154 144 192 256 192 0 2 0.0
R 144 176 80 176 0 2 60.0 2.5 2.5 0.0 0.5
w 144 208 144 320 0
w 144 320 432 320 0
r 256 192 320 192 0 5000.0
c 320 192 320 224 0 9.0E-6 0
w 432 192 432 224 0
O 144 320 96 320 0
a 352 128 432 128 1 15.0 -15.0 1000000.0
w 320 192 320 112 0
w 320 112 352 112 0
w 352 144 352 192 0
w 352 192 432 192 0
w 432 192 432 128 0
r 320 224 320 272 0 1000.0
g 320 272 320 288 0
o 7 64 0 46 5.0 9.765625E-5 0 -1
o 13 64 0 46 5.0 9.765625E-5 0 -1
o 11 64 0 35 1.1692013098647223 0.001461501637330903 1 -1


circuit.zip > eclosc.txt

$ 1 5.0E-6 8.63434833026695 49 1.0 50
l 128 192 128 256 0 0.1 0.009389546443369765
c 192 192 192 256 0 4.9999999999999996E-5 0.39860877318423565
t 160 144 208 144 0 1 0.39860877318423565 0.6730719429761438 100.0
t 352 144 304 144 0 1 -0.39860877318423565 0.2744631697919081 100.0
w 208 128 208 96 0
w 208 96 240 96 0
g 240 96 240 112 0
w 208 160 208 176 0
w 208 176 256 176 0
w 256 176 304 176 0
w 304 176 304 160 0
r 256 176 256 240 0 100.0
R 256 240 256 272 0 0 40.0 -5.2 0.0 0.0 0.5
w 304 128 304 64 0
w 304 64 160 64 0
w 160 64 160 144 0
w 160 144 160 192 0
w 160 192 128 192 0
w 160 192 192 192 0
w 128 256 160 256 0
w 160 256 192 256 0
g 160 256 160 272 0
g 352 144 352 160 0
O 304 64 368 64 0
x 213 150 235 154 0 16 Q1
x 279 150 301 154 0 16 Q2
o 23 32 0 42 1.25 2.44140625E-5 0 -1


circuit.zip > voltquad.txt

$ 1 5.0E-6 10 53 15.0 45
d 208 256 288 256 0
c 208 160 288 160 0 9.999999999999999E-5 0
d 288 160 368 160 0
c 368 160 368 336 0 9.999999999999999E-5 0
w 368 160 432 160 0
r 432 160 432 336 0 50000.0
g 208 336 208 352 0
g 368 336 368 352 0
g 432 336 432 352 0
R 208 160 160 160 0 1 120.0 15.0 0.0
d 208 336 208 256 0
d 288 256 288 160 0
c 288 256 288 336 0 9.999999999999999E-5 0
g 288 336 288 352 0
c 208 160 208 256 0 9.999999999999999E-5 0
o 9 64 0 3 80.0 0.00625
o 5 64 0 3 80.0 0.00625


circuit.zip > opamp.txt

$ 1 5.0E-6 10.812258501325767 50 5.0 50
a 256 240 384 240 0 15.0 -15.0
172 256 224 208 224 0 6 3.0 5.0 0.0 0.0 0.5 - Voltage
172 256 256 208 256 0 6 4.0 5.0 0.0 0.0 0.5 + Voltage
O 384 240 432 240 1


circuit.zip > vco.txt

$ 1 5.0E-6 8.872897488127265 75 5.0 50
a 176 160 272 160 0 5.0 0.0
a 368 176 464 176 0 5.0 0.0
w 272 160 304 160 0
w 304 160 368 160 0
w 368 192 368 224 0
w 464 176 464 224 0
r 368 224 464 224 0 100000.0
r 368 224 368 288 0 100000.0
g 368 288 368 304 0
r 176 176 176 240 0 49900.0
g 176 240 176 256 0
w 176 144 176 96 0
w 176 144 144 144 0
r 144 144 64 144 0 100000.0
w 64 144 64 160 0
w 64 160 64 176 0
r 64 176 160 176 0 49900.0
w 160 176 176 176 0
w 144 144 144 272 0
r 144 272 144 320 0 49900.0
g 144 352 144 368 0
f 192 336 144 336 0
w 192 336 464 336 0
w 464 336 464 224 0
c 176 96 272 96 0 1.0E-8 -2.248578405619046
w 272 96 272 160 0
w 368 192 368 128 0
r 368 128 368 80 0 100000.0
R 368 80 416 80 0 0 40.0 5.0 0.0
R 64 160 32 160 0 4 10.0 2.0 3.0
O 464 176 512 176 0
O 304 160 304 48 0
o 29 64 0 2 5.0 9.765625E-5 0 control
o 30 32 0 2 10.0 4.8828125E-5 1
o 31 32 0 2 5.0 9.765625E-5 2


circuit.zip > spark-sawtooth.txt

$ 1 1.0E-6 43.84883893407173 66 2000.0 50
R 320 160 320 128 0 0 40.0 2000.0 0.0 0.0 0.5
r 320 160 320 240 0 2000000.0
187 320 240 320 336 0 10000.0 1.0E9 1000.0 0.0010
g 320 336 320 352 0
c 352 240 352 336 0 1.0E-8 954.6107492378424
w 352 336 320 336 0
w 320 240 352 240 0
o 4 128 0 35 1280.0 0.1 0 -1


circuit.zip > capseries.txt

$ 1 5.0E-6 10 50 5.0
v 48 336 48 64 0 0 40.0 5.0 0.0
S 144 144 144 64 0 false false 1
w 240 64 240 336 0
r 48 336 144 336 0 100.0
r 144 336 240 336 0 100.0
c 144 144 144 240 0 0.0010 0
c 144 240 144 336 0 9.999999999999999E-5 0
w 48 64 128 64 0
w 160 64 240 64 0
r 288 336 384 336 0 100.0
r 384 336 480 336 0 100.0
w 480 64 480 336 0
S 384 144 384 64 0 false false 1
w 288 64 368 64 0
w 400 64 480 64 0
c 384 144 384 336 0 9.091E-5 0
v 288 336 288 64 0 0 40.0 5.0 0.0


circuit.zip > xor.txt

$ 1 5.0E-6 1.5 50 5.0
151 96 240 208 240 0 2 0
151 208 192 320 192 0 2 0
151 208 288 320 288 0 2 0
w 208 240 208 272 0
w 208 240 208 208 0
151 320 240 432 240 0 2 0
w 320 192 320 224 0
w 320 256 320 288 0
w 96 176 96 224 0
w 96 176 208 176 0
w 96 256 96 304 0
w 96 304 208 304 0
M 432 240 480 240 0
L 96 176 48 176 0 true false
L 96 304 48 304 0 true false


circuit.zip > jkff.txt

$ 1 5.0E-6 10.812258501325767 50 5.0 50
151 432 144 528 144 0 2 0.0
151 432 256 528 256 0 2 5.0
w 432 224 432 240 0
w 432 160 432 176 0
w 528 224 528 256 0
w 528 224 432 176 0
w 528 144 528 176 0
w 528 176 432 224 0
151 320 128 432 128 0 2 5.0
151 320 272 432 272 0 2 0.0
w 320 144 320 256 0
w 320 256 320 336 0
151 192 144 288 144 0 2 0.0
151 192 256 288 256 0 2 5.0
w 320 112 288 112 0
w 288 112 288 144 0
w 288 256 288 288 0
w 288 288 320 288 0
w 192 160 192 176 0
w 192 240 192 224 0
w 288 224 288 256 0
w 288 224 192 176 0
w 288 176 288 144 0
w 288 176 192 224 0
151 80 128 192 128 0 3 5.0
I 64 336 320 336 0 0.5
M 528 144 592 144 0 2.5
M 528 256 592 256 0 2.5
x 518 117 537 123 0 24 Q
x 520 305 539 311 2 24 Q
w 32 112 80 112 0
x 30 47 37 53 0 24 J
R 64 336 32 336 1 2 120.0 2.5 2.5 0.0 0.5
151 80 272 192 272 0 3 5.0
w 432 160 432 64 0
w 432 64 80 64 0
w 80 64 80 128 0
L 32 256 32 224 0 1 false 5.0 0.0
x 24 193 40 199 0 24 K
w 64 336 64 256 0
w 64 256 80 256 0
w 80 144 64 144 0
w 64 144 64 256 0
w 32 288 32 256 0
w 32 288 80 288 0
w 432 240 432 368 0
w 432 368 80 368 0
w 80 368 80 272 0
L 32 112 32 80 0 1 false 5.0 0.0
o 48 64 0 38 7.62939453125E-5 9.765625E-5 0 -1 J
o 37 64 0 38 5.0 9.765625E-5 0 -1 K
o 26 64 0 38 7.62939453125E-5 9.765625E-5 0 -1 Q
o 32 64 0 38 5.0 9.765625E-5 0 -1 clk


circuit.zip > deccounter.txt

$ 3 5.0E-6 13 50 5.0
156 72 248 128 248 0 5.0
156 208 248 240 248 0 0.0
156 336 248 368 248 0 0.0
156 464 248 480 248 0 0.0
w 448 312 464 312 0
w 320 312 336 312 0
w 320 312 320 248 0
w 320 248 336 248 0
w 72 248 56 248 0
w 56 248 56 312 0
w 56 312 72 312 0
w 432 248 432 88 0
M 560 64 592 64 2 2.5
R 56 248 24 248 0 0 40.0 5.0 0.0
R 72 360 24 360 1 2 200.0 2.5 2.5
w 72 280 72 360 0
w 72 360 208 360 0
w 208 360 208 280 0
w 336 280 336 360 0
w 336 360 208 360 0
w 336 360 464 360 0
w 464 360 464 280 0
150 336 176 336 248 1 2 0.0
w 304 248 304 112 0
w 304 112 328 112 0
w 328 112 328 176 0
w 344 136 344 176 0
w 168 136 344 136 0
150 464 176 464 248 1 3 0.0
w 344 136 472 136 0
w 472 136 472 176 0
w 328 112 464 112 0
w 464 112 464 176 0
w 432 88 456 88 0
w 456 88 456 176 0
M 464 112 592 112 2 2.5
M 456 88 592 88 2 2.5
150 192 176 240 176 1 2 5.0
w 240 176 240 216 0
w 208 216 208 248 0
w 208 216 240 216 0
w 168 248 168 168 0
w 168 168 192 168 0
w 168 136 168 168 0
w 560 312 560 384 0
w 560 384 184 384 0
w 184 384 184 184 0
w 184 184 192 184 0
w 200 248 208 248 0
w 200 248 200 312 0
w 200 312 208 312 0
150 512 160 512 208 1 2 0.0
w 472 136 504 136 0
w 504 136 504 160 0
w 560 64 560 160 0
w 560 160 520 160 0
w 560 160 560 248 0
w 512 208 584 208 0
w 584 208 584 344 0
w 584 344 448 344 0
w 448 344 448 312 0
M 504 136 592 136 2 2.5
o 12 64 0 6 5.0 9.765625E-5 0
o 36 64 0 6 5.0 9.765625E-5 0
o 35 64 0 6 5.0 9.765625E-5 0
o 61 64 0 6 5.0 9.765625E-5 0


circuit.zip > tdosc.txt

$ 1 5.0E-6 10.20027730826997 54 1.5 50
R 160 176 128 176 0 0 40.0 1.5 0.0 0.0 0.5
r 160 176 240 176 0 80.0
r 240 176 240 288 0 24.0
175 240 176 320 176 0
r 320 176 320 288 0 75.0
l 448 176 448 288 0 0.2 0.0014801805180037042
O 448 176 512 176 0
g 240 288 240 304 0
g 320 288 320 304 0
g 448 288 448 304 0
w 320 176 384 176 0
c 384 176 384 288 0 3.9999999999999996E-5 -0.0973586411333848
w 384 176 448 176 0
g 384 288 384 304 0
o 3 64 0 35 0.625 0.0125 0 -1 diode
o 3 64 0 99 0.625 0.00625 1 -1
o 6 64 0 34 0.3125 4.8828125E-5 2 -1 output


circuit.zip > relaytff.txt

$ 1 1.0E-5 18.278915558614752 50 5.0 50
178 496 224 592 224 1 1 0.1 9.996201113724626E-6 0.05 1000000.0 0.02 20.0
R 112 208 64 208 0 0 40.0 5.0 0.0 0.0 0.5
w 176 208 176 368 0
w 368 304 448 304 0
w 176 368 368 368 0
w 368 272 400 272 0
w 400 320 400 368 0
w 400 368 368 368 0
w 368 176 624 176 0
w 624 176 624 240 0
w 624 240 592 240 0
s 208 144 288 144 0 1 false
w 288 288 208 288 0
r 112 208 176 208 0 100.0
178 288 288 368 288 1 2 0.1 9.996201118876302E-6 0.05 1000000.0 0.02 20.0
w 208 288 208 144 0
w 368 256 416 256 0
w 416 256 416 224 0
w 448 224 496 224 0
w 368 224 368 176 0
w 416 336 416 256 0
g 448 304 448 336 0
w 416 224 448 224 0
w 288 144 288 240 0
x 225 97 275 101 0 16 toggle
w 368 336 416 336 0
w 368 320 400 320 0
w 400 272 400 320 0
w 592 256 624 256 0
w 624 240 624 256 0
g 592 272 592 336 0


circuit.zip > schmitt.txt

$ 1 5.0E-6 16.13 50 5.0 50
r 192 32 192 96 0 500.0
r 192 96 336 96 0 100.0
w 336 96 336 144 0
t 336 144 416 144 0 1 0.5820470981894252 0.631962165475968 100.0
t 128 144 192 144 0 1 -1.8901554514017818 -0.6779682779383932 100.0
w 192 96 192 128 0
w 416 128 416 96 0
w 192 32 416 32 0
r 416 32 416 96 0 500.0
w 192 160 192 192 0
w 192 192 416 192 0
w 416 160 416 192 0
w 336 144 336 208 0
r 336 208 336 272 0 300.0
r 192 192 192 272 0 100.0
w 192 272 336 272 0
R 192 32 128 32 0 0 40.0 5.0 0.0 0.0 0.5
g 192 272 192 320 0
R 64 144 32 144 0 1 2000.0 0.2 0.0 0.0 0.5
p 128 144 128 272 0
w 128 272 192 272 0
v 64 144 128 144 0 1 40.0 2.0 2.0 0.0 0.5
O 416 96 464 96 0
x 201 151 223 155 0 16 Q1
x 425 151 447 155 0 16 Q2
o 19 64 0 38 5.0 9.765625E-5 0 -1 in
o 22 64 0 34 5.0 9.765625E-5 1 -1 out
o 19 64 0 226 5.0 6.4 2 22 out vs in


circuit.zip > dcrestoration.txt

$ 1 1.0E-6 7 59 5.0
R 160 144 96 144 0 1 500.0 5.0 0.0
c 160 144 272 144 0 5.0E-6 -3.0584720734913993
d 272 256 272 144 0
g 272 256 272 288 0
w 272 144 352 144 0
r 352 144 352 256 0 5000.0
g 352 256 352 288 0
O 352 144 416 144 0
o 7 32 0 2 10.0 9.765625E-5


circuit.zip > coupled3.txt

$ 1 5.0E-6 17.50203994009402 55 5.0 50
l 144 32 256 32 0 1.0 -0.010526054531836967
l 256 32 368 32 0 1.0 -0.014780859108181294
c 144 32 144 112 0 1.0E-5 -1.5283359644818593
c 256 32 256 112 0 1.0E-5 -0.6226471660960838
c 368 32 368 112 0 1.0E-5 0.6226471660960479
r 144 112 256 112 0 1.0
r 256 112 368 112 0 1.0
l 368 32 480 32 0 1.0 -0.010526054531837074
c 480 32 480 112 0 1.0E-5 1.528335964481852
r 368 112 480 112 0 1.0
g 144 112 144 128 0
l 144 160 256 160 0 1.0 0.0146359989059815
l 256 160 368 160 0 1.0 -7.561108857079762E-17
c 144 160 144 240 0 1.0E-5 -3.205717865478435
c 256 160 256 240 0 1.0E-5 3.2057178654783622
c 368 160 368 240 0 1.0E-5 3.205717865478375
r 144 240 256 240 0 1.0
r 256 240 368 240 0 1.0
l 368 160 480 160 0 1.0 -0.014635998905981084
c 480 160 480 240 0 1.0E-5 -3.2057178654783813
r 368 240 480 240 0 1.0
g 144 240 144 256 0
l 144 288 256 288 0 1.0 0.009608347545030023
l 256 288 368 288 0 1.0 -0.013588266474160417
c 144 288 144 368 0 1.0E-5 0.9505461007504308
c 256 288 256 368 0 1.0E-5 -2.2948228963492374
c 368 288 368 368 0 1.0E-5 2.2948228963492827
r 144 368 256 368 0 1.0
r 256 368 368 368 0 1.0
l 368 288 480 288 0 1.0 0.009608347545029965
c 480 288 480 368 0 1.0E-5 -0.9505461007504287
r 368 368 480 368 0 1.0
g 144 368 144 384 0
o 9 128 0 43 0.01953125 0.0125 0 -1
o 20 128 0 43 0.0390625 0.025 1 -1
o 31 128 0 43 0.01953125 0.0125 2 -1


circuit.zip > relayff.txt

$ 1 5.0E-6 10.20027730826997 45 5.0 50
178 224 192 336 192 1 1 0.2 0.21813393565127673 0.05 1000000.0 0.02 20.0
178 528 192 400 192 1 1 0.2 4.99990000199996E-6 0.05 1000000.0 0.02 20.0
w 352 176 384 224 0
w 352 224 384 176 0
w 224 192 224 144 0
w 224 144 528 144 0
w 528 144 528 192 0
R 224 144 160 144 0 0 40.0 5.0 0.0 0.0 0.5
s 336 240 336 320 0 0 true
s 400 240 400 320 0 0 true
g 336 320 336 336 0
g 400 320 400 336 0
x 247 286 317 290 0 16 set/reset
w 336 176 352 176 0
w 336 224 352 224 0
w 384 224 400 224 0
w 384 176 400 176 0


circuit.zip > cmosinverter.txt

$ 0 5.0E-6 10 50 5.0
f 208 176 272 176 1
f 208 272 272 272 0
w 272 192 272 224 0
w 272 224 272 256 0
w 208 176 208 224 0
w 208 224 208 272 0
L 208 224 160 224 0 false false
M 272 224 336 224 0
R 272 160 272 112 0 0 40.0 5.0 0.0
g 272 288 272 320 0


circuit.zip > cappar.txt

$ 1 5.0E-6 18 50 5.0
v 48 336 48 64 0 0 40.0 5.0 0.0
S 144 144 144 64 0 false false 1
w 240 64 240 336 0
r 48 336 144 336 0 100.0
r 144 336 240 336 0 100.0
w 48 64 128 64 0
w 160 64 240 64 0
r 288 336 384 336 0 100.0
r 384 336 480 336 0 100.0
w 480 64 480 336 0
S 384 144 384 64 0 false false 1
w 288 64 368 64 0
w 400 64 480 64 0
c 384 144 384 336 0 3.0E-4 0
v 288 336 288 64 0 0 40.0 5.0 0.0
w 144 144 144 192 0
w 144 336 144 288 0
w 144 288 96 288 0
w 96 192 144 192 0
w 144 192 192 192 0
c 192 192 192 288 0 1.9999999999999998E-4 0
r 144 288 192 288 0 0.01
c 96 192 96 288 0 9.999999999999999E-5 0


circuit.zip > 555saw.txt

$ 1 5.0E-6 16.817414165184545 66 15.0 50
r 240 112 240 48 0 39000.0
r 192 128 192 48 0 27000.0
r 192 128 192 208 0 120000.0
w 192 48 240 48 0
R 192 48 144 48 0 0 40.0 15.0 0.0 0.0 0.5
w 240 144 240 208 1
g 192 208 192 224 0
w 240 208 240 272 0
w 240 272 240 304 0
w 240 304 240 368 0
c 240 368 240 400 0 2.0E-7 5.858523256602457
g 240 400 240 416 0
r 240 208 288 208 0 10000.0
w 288 272 240 272 0
w 240 304 288 304 0
w 240 48 352 48 0
w 352 48 352 144 0
O 240 368 468 368 0
t 192 128 240 128 0 -1 6.398899615692838 -0.5042009986318234 100.0
165 288 176 304 176 2 15.0
w 352 48 416 48 0
w 416 48 416 208 0
o 17 64 0 42 11.0 9.765625E-5 0 -1


circuit.zip > trans-diffamp-common.txt

$ 1 5.0E-6 5.6 68 15.0 60
t 176 224 208 224 0 1 -15.316178939790538 0.5164877485159067
t 400 224 336 224 0 1 -8.349791529425255 0.516487748515907
w 208 240 208 272 0
w 336 240 336 272 0
r 208 272 272 272 0 1000.0
r 272 272 336 272 0 1000.0
r 272 272 272 352 0 75000.0
r 336 144 336 64 0 75000.0
w 208 64 336 64 0
R 208 64 176 64 0 0 40.0 15.0 0.0
R 272 352 208 352 0 0 40.0 -15.0 0.0
R 176 224 128 224 0 1 40.0 1.0 0.0
R 400 224 432 224 0 1 40.0 1.0 0.0
p 400 224 400 288 0
g 400 288 400 320 0
w 336 144 336 208 0
w 208 64 208 208 0
O 336 144 416 144 0
x 154 206 170 206 0 14 in 1
x 377 207 393 207 0 14 in 2
o 11 32 0 2 0.15625 9.765625E-5 0
o 13 32 0 2 0.3125 9.765625E-5 0
o 17 32 0 2 20.0 9.765625E-5 1 output


circuit.zip > dtlnand.txt

$ 1 5.0E-6 10 54 5.0
g 336 272 336 320 0
r 240 176 240 96 0 4700.0
r 336 96 336 176 0 1000.0
w 336 176 336 240 0
M 336 176 432 176 0
w 240 96 336 96 0
t 288 256 336 256 0 1 0.585207666112351 0.6224167269732703
d 240 256 288 256 0
d 240 256 192 256 0
L 192 256 144 256 0 false false
R 240 96 144 96 0 0 40.0 5.0 0.0
d 240 224 192 224 0
d 240 288 192 288 0
w 240 176 240 224 0
w 240 224 240 256 0
w 240 256 240 288 0
L 192 224 144 224 0 false false
L 192 288 144 288 0 false false


circuit.zip > xorphasedet.txt

$ 1 5.0E-6 10 50 5.0
R 192 128 128 128 0 2 100.0 2.5 2.5
R 192 224 128 224 0 2 105.0 2.5 2.5
154 192 176 336 176 0 2 0.0
O 336 176 416 176 0
w 192 128 192 160 0
w 192 192 192 224 0
o 0 64 0 6 5.0 9.765625E-5 0
o 1 64 0 6 5.0 9.765625E-5 0
o 3 64 0 6 5.0 9.765625E-5 0


circuit.zip > powerfactor2.txt

$ 13 5.0E-6 10 50 120.0 28
v 176 304 176 128 2 1 60.0 120.0 0.0
r 304 128 448 128 0 10.0
w 176 304 304 304 0
l 448 128 448 304 0 5.0 0
w 304 304 448 304 0
r 176 128 304 128 0 50.0
c 304 128 304 304 0 1.4E-6 0
o 5 64 1 3 0.3125 9.765625E-5 0
o 1 64 1 3 0.078125 2.44140625E-5 1
o 3 64 1 3 5.0 9.765625E-5 2


circuit.zip > multivib-a.txt

$ 1 5.0E-6 8.203437568215378 50 5.0 50
w 128 48 208 48 0
w 208 48 288 48 0
w 288 48 368 48 0
r 128 48 128 176 0 330.0
r 208 48 208 176 0 1020.0
r 288 48 288 176 0 1020.0
r 368 48 368 176 0 320.0
c 128 176 208 176 0 1.8E-5 -0.1960622475177095
c 288 176 368 176 0 1.8E-5 -3.536074488299442
w 368 176 368 240 0
t 288 256 368 256 0 1 0.6643052625017931 0.6776743289781562 100.0
w 208 176 288 256 0
w 288 176 208 256 0
t 208 256 128 256 0 1 -4.004317503283525 -3.522705421823079 100.0
w 128 176 128 240 0
R 128 48 80 48 0 0 40.0 5.0 0.0 0.0 0.5
g 128 272 128 304 0
g 368 272 368 304 0
x 159 212 180 216 0 16 C1
x 317 213 338 217 0 16 C2
x 96 260 118 264 0 16 Q1
x 382 262 404 266 0 16 Q2
o 13 64 6 35 5.0 9.765625E-5 0 -1
o 10 64 6 35 5.0 9.765625E-5 1 -1


circuit.zip > mux.txt

$ 1 5.0E-6 19.765835257097933 58 5.0 50
f 256 112 256 64 0 1.5
f 256 288 256 224 0 1.5
f 256 176 256 224 1 1.5
f 256 16 256 64 1 1.5
w 256 288 192 288 0
w 256 16 192 16 0
R 240 64 64 64 0 1 80.0 2.5 2.5 0.0 0.5
R 240 224 64 224 0 3 40.0 2.5 2.5 0.0 0.5
w 272 64 368 64 0
w 272 224 368 224 0
w 368 64 368 224 0
r 368 224 368 304 0 1000.0
g 368 304 368 336 0
O 368 224 432 224 0
w 256 112 256 176 0
w 192 288 192 176 0
w 192 176 192 16 0
I 192 176 256 176 0 0.5
L 192 288 64 288 0 1 false 5.0 0.0
x 43 319 88 323 0 16 select
o 13 64 0 34 5.0 9.765625E-5 0 -1


circuit.zip > ccint.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
179 368 160 400 160 0 1.0
g 304 160 304 176 0
r 464 192 544 192 0 100.0
g 544 192 544 224 0
179 144 256 272 256 0 1.0
r 144 256 96 256 0 100.0
g 96 256 96 272 0
w 368 288 368 224 0
g 304 224 304 240 0
R 144 320 112 320 0 2 40.0 5.0 0.0 1.5707963267948966 0.5
w 240 288 368 288 0
c 304 224 368 224 0 1.0E-5 -5.786500000000048
r 304 160 368 160 0 1000.0
o 10 64 0 33 20.0 0.1 0 -1 input
o 2 64 0 33 2.3384026197294445 0.046768052394588894 0 -1 output


circuit.zip > norton.txt

$ 17 5.0E-6 10.8 50 5.0
r 112 160 208 112 0 100.0
r 208 112 224 208 0 100.0
r 224 208 320 160 0 200.0
r 208 112 288 128 0 100.0
r 304 64 288 128 0 100.0
v 288 128 384 112 0 0 40.0 5.0 0.0
v 320 160 320 240 0 0 40.0 5.0 0.0
v 112 160 128 224 0 0 40.0 5.0 0.0
v 304 64 224 48 0 0 40.0 5.0 0.0
v 224 208 224 272 0 0 40.0 5.0 0.0
r 224 272 304 288 0 200.0
r 128 224 64 272 0 400.0
r 384 112 448 176 0 100.0
r 320 240 384 256 0 100.0
r 224 48 112 64 0 1000.0
v 112 64 208 112 0 0 40.0 5.0 0.0
v 64 272 224 272 0 0 40.0 2.0 0.0
v 304 288 384 256 0 0 40.0 5.0 0.0
r 448 176 384 256 0 100.0
r 320 160 384 112 0 100.0
r 112 64 112 160 0 100.0
w 64 272 64 16 0
w 448 16 448 176 0
g 448 176 448 240 0
g 384 384 384 400 0
r 128 384 384 384 0 117.784267
i 128 352 384 352 0 0.02383663
w 384 320 384 352 0
w 384 352 384 384 0
w 128 352 128 384 0
w 128 320 128 352 0
v 64 16 448 16 0 1 40.0 5.0 0.0
v 128 320 384 320 0 1 40.0 5.0 0.0
o 31 64 0 3 5.0 0.1
o 32 64 0 3 5.0 0.1


circuit.zip > impedance.txt

$ 1 5.0E-6 4.798788906309526 54 5.0 48
v 240 176 240 112 0 1 80.0 5.0 0.0 1.5707963267948966 0.5
r 240 112 400 112 0 100.0
w 240 176 400 176 0
v 240 368 240 304 0 1 80.0 5.0 0.0 1.5707963267948966 0.5
w 240 368 400 368 0
r 240 304 400 304 0 100.0
l 400 112 400 176 0 0.34458 3.979221357045121E-4
c 400 304 400 368 0 1.1486E-5 2.224479357247581
w 240 272 400 272 0
v 240 272 240 208 0 1 80.0 5.0 0.0 1.5707963267948966 0.5
w 240 208 400 208 0
r 400 208 400 272 0 200.0
o 6 32 0 49 5.0 0.051 0 -1
o 11 32 0 49 5.0 0.051 0 -1
o 7 32 0 49 5.0 0.051 0 -1


circuit.zip > colpitts.txt

$ 1 5.0E-6 2.898875293967098 50 5.0 50
l 80 128 80 304 0 0.01 -0.010136293111238402
c 192 128 192 224 0 9.999999999999999E-5 0.6813812722941772
t 256 128 304 128 0 1 0.647542643140423 0.6813812722941772 100.0
c 192 224 192 304 0 9.999999999999999E-5 -0.627840195243891
w 80 304 192 304 0
w 80 128 192 128 0
w 192 128 256 128 0
w 192 224 304 224 0
w 304 144 304 224 0
w 304 112 352 112 0
r 352 112 352 304 0 1000.0
w 192 304 352 304 0
r 304 112 304 48 0 100.0
R 304 48 256 48 0 0 40.0 5.0 0.0 0.0 0.5
g 304 224 304 256 0
O 352 112 432 112 0
x 150 182 170 186 0 16 C1
x 150 271 171 275 0 16 C2
o 15 32 0 42 5.0 9.765625E-5 0 -1


circuit.zip > cc2.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
179 272 224 304 224 0 1.0
r 368 256 480 256 0 100.0
g 480 256 480 288 0
172 272 288 192 288 0 6 4.5 5.0 0.0 0.0 0.5 Y Voltage
174 272 224 208 176 0 1000.0 0.5 X Resistance
r 240 176 144 176 0 100.0
g 144 176 144 192 0


circuit.zip > opint-invert-amp.txt

$ 1 10.0E-6 1.5642631884188172 54 15.0 66
t 48 176 80 176 0 1 -14.524416831323471 0.45873235809238094 100.0
t 112 240 80 240 0 -1 13.155514603842647 -0.45873235809238094 100.0
t 80 304 128 304 0 1 -29.072979320027407 0.45933003350349466 100.0
t 128 368 80 368 0 1 -0.45933003350349466 0.4584749892202993 100.0
r 80 384 80 464 0 1000.0
r 128 368 128 464 0 50000.0
w 128 320 128 368 0
w 80 304 80 352 0
w 80 304 80 256 0
w 80 192 80 224 0
t 224 176 192 176 0 1 -14.524348068778691 0.45876673936477075 100.0
t 160 240 192 240 0 -1 13.003077911256218 -0.4587667393647708 100.0
w 192 192 192 224 0
w 112 240 160 240 0
w 160 240 160 272 0
w 192 256 192 304 0
t 128 368 192 368 0 1 -0.6117667260899236 0.4584749892202975 100.0
w 192 304 192 352 0
r 192 384 192 464 0 1000.0
w 80 464 128 464 0
w 128 464 192 464 0
R 80 464 32 464 0 0 40.0 -15.0 0.0 0.0 0.5
t 192 112 144 112 0 -1 0.0 -0.47558316867652906 100.0
t 192 112 288 112 0 -1 15.441881547508233 -0.47558316867652906 100.0
w 192 160 144 160 0
w 80 160 144 160 0
w 144 128 144 160 0
w 192 112 192 160 0
w 288 128 288 272 0
w 288 272 160 272 0
w 144 96 144 80 0
w 144 80 288 80 0
w 288 80 288 96 0
w 128 288 128 80 0
w 128 80 144 80 0
R 128 80 32 80 0 0 40.0 15.0 0.0 0.0 0.5
t 320 368 288 368 0 1 -13.514419339220254 0.4758368768112078 100.0
t 320 368 352 368 0 1 0.0 0.5681159445949842 100.0
w 288 272 288 352 0
r 288 384 288 464 0 5000.0
w 192 464 288 464 0
w 288 464 352 464 0
w 352 464 352 384 0
w 320 368 320 320 0
w 320 320 352 320 0
w 352 320 352 352 0
r 352 320 352 160 0 39000.0
t 416 112 352 112 0 -1 0.0 -0.5678758104275303 100.0
t 416 112 496 112 0 -1 13.570461032205355 -0.5678758104275303 100.0
w 352 128 352 160 0
w 416 112 416 160 0
w 416 160 352 160 0
w 288 80 352 80 0
w 352 80 352 96 0
w 352 80 496 80 0
w 496 80 496 96 0
w 496 128 496 160 0
w 496 160 528 160 0
t 528 160 576 160 0 1 -14.138336842632885 0.5304968797079701 100.0
t 576 208 528 208 0 1 -0.5304968797079701 0.004107850119627776 100.0
w 528 160 528 192 0
w 576 176 576 208 0
w 576 144 576 80 0
w 576 80 496 80 0
w 528 224 528 272 0
r 576 208 576 272 0 25.0
w 528 272 576 272 0
r 576 272 576 352 0 50.0
w 496 160 496 208 0
w 576 384 576 464 0
t 464 272 496 272 0 1 -0.36778983388140857 0.5648217349170979 100.0
r 464 272 464 208 0 4500.0
r 464 272 464 336 0 7500.0
w 464 336 496 336 0
w 496 336 496 288 0
w 496 256 496 208 0
w 496 208 464 208 0
t 496 368 576 368 0 -1 14.929051588568608 -0.3979658803531285 100.0
w 496 336 496 368 0
t 464 384 496 384 0 1 -14.326295192093617 0.5671551878197238 100.0
t 496 416 416 416 0 1 -1.0438561639037527 0.03560120865526706 100.0
r 496 416 496 464 0 50.0
w 464 384 464 432 0
r 464 432 464 464 0 50000.0
w 464 464 496 464 0
w 496 464 576 464 0
w 464 464 416 464 0
w 416 464 416 432 0
w 352 464 416 464 0
w 496 400 496 416 0
t 416 352 464 352 0 1 -13.849594216009589 0.47670097608402884 100.0
w 416 352 416 400 0
w 464 368 464 384 0
w 192 304 416 304 0
w 416 304 416 352 0
w 464 208 416 208 0
c 416 208 416 304 0 3.0E-11 14.782205784808095
O 608 272 640 272 0
g 48 176 48 224 0
w 224 176 224 48 0
r 224 48 608 48 0 2000.0
w 608 48 608 272 0
w 608 272 576 272 0
r 224 48 128 48 0 1000.0
R 128 48 80 48 0 1 40.0 5.0 0.0 0.0 0.5
x 13 183 32 189 0 24 +
x 225 211 239 217 0 24 -
o 97 16 0 34 20.0 9.765625E-5 0 -1


circuit.zip > indmultind.txt

$ 1 5.0E-6 10 53 5.0 46
v 224 144 224 80 2 1 80.0 5.0 0.0
r 224 80 384 80 0 100.0
w 224 144 384 144 0
v 224 240 224 176 2 1 80.0 5.0 0.0
r 224 176 384 176 0 100.0
w 224 240 384 240 0
v 224 336 224 272 2 1 80.0 5.0 0.0
w 224 336 384 336 0
r 224 272 384 272 0 100.0
l 384 80 384 144 0 1.0 0
l 384 176 384 240 0 0.4 0
l 384 272 384 336 0 0.02 0
o 9 64 0 17 10.0 0.05 0
o 10 64 0 17 5.0 0.05 1
o 11 64 0 17 5.0 0.05 2


circuit.zip > cmosinvertercap.txt

$ 1 1.0E-12 10 50 5.0 38
f 224 144 288 144 1
f 224 272 288 272 0
w 288 160 288 208 0
M 288 208 352 208 0
w 288 128 288 96 0
c 224 96 288 96 0 1.0000000000000001E-11 -5.000000000000001
c 288 208 224 208 0 1.0000000000000001E-11 4.999999285714189
w 224 144 224 208 0
w 224 208 224 272 0
w 288 208 288 256 0
c 288 320 224 320 0 1.0000000000000001E-11 1.6279405589908862E-23
w 288 288 288 320 0
R 288 96 288 48 0 0 40.0 5.0 0.0
L 224 208 160 208 0 true false
g 288 320 288 368 0
r 224 96 224 144 0 5.0
r 224 272 224 320 0 5.0


circuit.zip > diodecurve.txt

$ 1 5.0E-6 10.812258501325767 50 2.0 50
R 288 208 288 160 0 3 50.0 0.65 0.25 0.0 0.5
d 288 208 288 288 0
g 288 288 288 320 0
o 1 64 0 34 1.25 25.6 0 -1
o 1 64 0 33 0.625 51.2 0 -1
o 1 64 0 99 1.25 51.2 1 -1 I vs V


circuit.zip > bandpass.txt

$ 1 5.0E-6 10.391409633455755 50 5.0 46
w 352 144 352 208 0
w 352 288 352 336 0
w 304 288 352 288 0
w 352 288 400 288 0
w 304 208 352 208 0
w 352 208 400 208 0
l 304 208 304 288 0 0.5 0
c 400 208 400 288 0 3.17E-5 0
r 240 144 352 144 0 250.0
O 352 144 448 144 0
g 352 336 352 352 0
170 240 144 208 144 3 10.0 150.0 5.0 0.5
o 11 128 0 34 5.0 9.765625E-5 0 -1
o 9 128 0 34 5.0 9.765625E-5 1 -1
h 1 6 7


circuit.zip > triodeamp.txt

$ 1 5.0E-6 11.086722712598126 60 3.0 53
w 272 64 368 64 0
r 272 224 272 368 0 10000.0
w 272 368 352 368 0
g 272 368 272 400 0
R 272 64 176 64 0 0 40.0 160.0 0.0 0.0 0.5
r 368 64 368 192 0 10000.0
r 352 256 352 368 0 3000.0
c 272 224 192 224 0 4.9999999999999996E-6 -0.011918466765635682
R 192 224 144 224 0 1 80.0 0.5 0.0 0.0 0.5
c 368 192 448 192 0 4.9999999999999996E-6 156.41283175374522
O 448 192 496 192 0
r 448 192 448 288 0 100000.0
g 448 288 448 320 0
173 272 224 368 224 0 93.0 1360.0
w 352 256 400 256 0
c 400 256 400 368 0 4.9999999999999996E-6 1.2120701747074232
w 352 368 400 368 0
o 8 64 0 34 0.625 9.765625E-5 0 -1
o 10 64 0 34 5.0 2.44140625E-5 1 -1


circuit.zip > mosswitch.txt

$ 1 5.0E-6 10.812258501325767 50 5.0 50
s 288 224 288 304 0 1 false
w 288 128 400 128 0
r 400 128 400 288 0 300.0
w 400 320 400 336 0
f 288 304 400 304 0 1.5
w 288 128 288 224 0
R 288 128 240 128 0 0 40.0 5.0 0.0 0.0 0.5
g 400 336 400 352 0


circuit.zip > rtlnor.txt

$ 1 5.0E-6 10 52 5.0
t 176 208 224 208 0 1 0.638186904488133 0.6478945398932158
t 272 208 320 208 0 1 -0.00970763539752057 7.562178340717264E-12
t 368 208 416 208 0 1 -0.00970763539752057 7.562178340717264E-12
w 224 160 224 192 0
w 320 160 320 192 0
w 224 160 320 160 0
w 320 160 416 160 0
w 416 160 416 192 0
r 176 208 176 272 0 470.0
r 272 208 272 272 0 470.0
r 368 208 368 272 0 470.0
L 176 272 176 304 0 false false 3.6 0.0
L 272 272 272 304 0 true false 3.6 0.0
L 368 272 368 304 0 true false 3.6 0.0
w 224 224 224 336 0
w 320 224 320 336 0
w 416 224 416 336 0
w 416 336 320 336 0
w 320 336 224 336 0
r 416 160 416 64 0 640.0
g 416 336 416 368 0
R 416 64 352 64 0 0 40.0 3.6 0.0
M 416 160 464 160 0


circuit.zip > classd.txt

$ 1 5.0E-6 8.531194996067258 50 5.0 50
a 160 224 256 224 0 15.0 -15.0
f 256 256 304 256 1 1.5
f 256 192 304 192 0 1.5
w 256 192 256 224 0
w 256 224 256 256 0
w 304 208 304 224 0
w 304 224 304 240 0
R 304 176 304 128 0 0 40.0 15.0 0.0 0.0 0.5
l 304 224 400 224 0 0.08 0.062136746137611415
c 400 224 400 304 0 1.0E-5 -6.657326718051054
g 400 304 400 336 0
w 304 272 304 288 0
O 400 224 464 224 0
w 160 240 160 256 0
w 160 208 160 192 0
R 160 256 112 256 0 3 1000.0 1.001 0.0 0.0 0.5
R 160 192 112 192 0 1 30.0 1.001 0.0 0.0 0.5
R 304 288 304 336 0 0 40.0 -15.0 0.0 0.0 0.5
g 256 320 256 336 0
p 256 256 256 320 0
o 16 64 0 34 1.2 9.765625E-5 0 -1 input
o 19 16 0 34 20.0 9.765625E-5 1 -1
o 12 64 0 34 15.0 4.8828125E-5 2 -1 output


circuit.zip > decoder.txt

$ 1 5.0E-6 1.5 50 5.0
150 416 128 512 128 0 2 0.0
150 416 192 512 192 0 2 0.0
150 416 256 512 256 0 2 0.0
150 416 320 512 320 0 2 5.0
w 416 112 352 112 0
w 352 112 352 176 0
w 352 176 416 176 0
w 416 240 352 240 0
w 352 240 352 304 0
w 352 304 416 304 0
w 416 144 384 144 0
w 384 144 384 272 0
w 384 272 416 272 0
w 416 208 320 208 0
w 320 208 320 336 0
w 320 336 416 336 0
w 144 112 352 112 0
w 352 240 144 240 0
I 144 112 144 240 0
L 144 112 64 112 2 true false 5.0 0.0
w 384 272 144 272 0
w 320 336 144 336 0
L 144 272 64 272 2 true false 5.0 0.0
I 144 272 144 336 0
M 512 128 560 128 0 2.5
M 512 192 560 192 0 2.5
M 512 256 560 256 0 2.5
M 512 320 560 320 0 2.5


circuit.zip > counter.txt

$ 1 5.0E-6 10 50 5.0
156 80 224 128 224 0 0.0
156 208 224 240 224 0 0.0
156 336 224 368 224 0 0.0
156 464 224 480 224 0 0.0
w 176 224 176 256 0
w 176 256 208 256 0
w 304 224 304 256 0
w 304 256 336 256 0
w 432 224 432 256 0
w 432 256 464 256 0
w 464 224 448 224 0
w 448 224 448 288 0
w 448 288 464 288 0
w 448 288 448 336 0
w 448 336 320 336 0
w 320 336 320 288 0
w 320 288 336 288 0
w 320 288 320 224 0
w 320 224 336 224 0
w 208 224 192 224 0
w 192 224 192 288 0
w 192 288 208 288 0
w 192 288 192 336 0
w 192 336 320 336 0
w 80 224 64 224 0
w 64 224 64 288 0
w 64 288 80 288 0
w 64 288 64 336 0
w 64 336 192 336 0
R 80 256 32 256 1 2 200.0 2.5 2.5
R 64 336 32 336 0 0 40.0 5.0 0.0
w 560 224 560 64 0
w 432 224 432 96 0
w 304 224 304 128 0
w 176 224 176 160 0
M 560 64 592 64 2
M 432 96 592 96 2
M 304 128 592 128 2
M 176 160 592 160 2
o 35 64 0 6 5.0 9.765625E-5 0
o 36 64 0 6 5.0 9.765625E-5 0
o 37 64 0 6 5.0 9.765625E-5 0
o 38 64 0 6 5.0 9.765625E-5 0


circuit.zip > ttlinverter.txt

$ 1 5.0E-6 10 54 5.0
t 224 192 224 272 0 1 0.5875584150944089 -3.7844516501481884
t 240 272 320 272 0 1 0.6035944264912844 0.6279899347574025
g 320 288 320 336 0
L 208 272 144 272 0 false false
r 224 192 224 112 0 4700.0
r 320 112 320 192 0 1000.0
w 320 192 320 256 0
M 320 192 416 192 0
R 224 112 144 112 0 0 40.0 5.0 0.0
w 224 112 320 112 0


circuit.zip > res-par.txt

$ 1 5.0E-6 15 53 5.0
v 64 240 64 160 0 1 41.09 5.0 0.0
c 448 160 448 240 0 1.4999999999999999E-5 2.5658496700882356
w 64 160 192 160 0
w 192 160 320 160 0
w 320 160 448 160 0
l 320 160 320 240 0 1.0 -0.016508821800832994
r 192 160 192 240 0 2000.0
w 192 240 320 240 0
w 320 240 448 240 0
r 64 240 192 240 0 100.0
v 64 128 64 48 0 1 30.0 5.0 0.0
c 448 48 448 128 0 1.4999999999999999E-5 -4.290086412851864
w 64 48 192 48 0
w 192 48 320 48 0
w 320 48 448 48 0
l 320 48 320 128 0 1.0 0.01334973082855116
r 192 48 192 128 0 2000.0
w 192 128 320 128 0
w 320 128 448 128 0
r 64 128 192 128 0 100.0
v 64 352 64 272 0 1 50.0 5.0 0.0
c 448 272 448 352 0 1.4999999999999999E-5 2.9322583665440085
w 64 272 192 272 0
w 192 272 320 272 0
w 320 272 448 272 0
l 320 272 320 352 0 1.0 -0.01279067133991683
r 192 272 192 352 0 2000.0
w 192 352 320 352 0
w 320 352 448 352 0
r 64 352 192 352 0 100.0
h 1 5 1
o 10 64 0 1 2.5 0.025
o 0 64 0 1 2.5 0.003125
o 20 64 0 1 2.5 0.0125


circuit.zip > fullrect.txt

$ 1 5.0E-6 10 53 5.0 50
v 160 352 160 64 0 1 40.0 5.0 0.0
w 160 64 304 64 0
w 304 64 304 128 0
d 304 128 368 192 0
d 304 256 368 192 0
d 240 192 304 128 0
d 240 192 304 256 0
w 304 256 304 352 0
w 304 352 160 352 0
w 240 192 240 288 0
w 368 192 416 192 0
w 240 288 416 288 0
r 416 192 416 288 0 100.0
x 463 248 479 248 0 20 load
o 0 64 0 3 5.0 0.05 0
o 12 64 0 3 5.0 0.05 1


circuit.zip > tesla.txt

$ 1 1.0E-8 12.235633750745258 30 120.0 50
g 240 304 240 336 0
r 240 256 176 256 0 10.0
R 176 256 144 256 0 1 60.0 120.0 0.0 0.0 0.5
T 240 256 320 304 2 10.0 100.0 4.437258653736118 -0.04413717098860063 0.999
c 384 224 464 224 0 2.0E-8 9788.947578396032
w 320 304 320 336 0
w 384 336 464 336 0
w 320 224 320 256 0
g 320 336 320 368 0
w 320 224 384 224 2
w 320 336 384 336 0
w 464 224 464 256 0
w 464 304 464 336 0
c 528 256 528 144 0 2.5E-11 -0.002896435768521405
r 528 304 528 352 0 0.1
g 528 352 528 368 0
T 464 256 528 304 2 3.16628E-5 28.28427 0.04412738203720486 1.4084140624744444E-8 0.1
187 384 224 384 336 0 1.0 1.0E9 10000.0 0.0010
w 528 144 592 144 0
g 592 144 592 368 0
o 17 64 0 35 10240.0 9.765625E-5 0 -1
o 13 32 0 34 0.0048828125 9.765625E-5 0 -1


circuit.zip > allpass2.txt

$ 1 5.0E-6 10.634267539816555 55 5.0 50
a 320 224 416 224 0 15.0 -15.0
r 320 208 240 208 0 1000.0
r 320 240 240 240 0 1000.0
w 320 208 320 144 0
r 320 144 416 144 0 1000.0
w 416 144 416 224 0
c 320 240 320 320 0 1.0E-6 -4.292934919713338
g 320 320 320 336 0
w 240 208 240 240 0
O 416 224 480 224 0
R 240 208 192 208 0 2 100.0 5.0 0.0 0.0 0.5
o 9 16 0 34 24.0 9.765625E-55 0 -1 output


circuit.zip > switchedcap.txt

$ 1 5.0E-6 17.50203994009402 50 5.0 50
159 160 176 256 176 0
159 256 176 352 176 0
c 352 176 352 240 0 4.876999999999999E-6 0
w 352 176 416 176 0
a 416 192 512 192 1 15.0 -15.0
w 416 208 416 240 0
w 416 240 512 240 0
w 512 240 512 192 0
O 512 192 576 192 0
g 256 240 256 256 0
g 352 240 352 256 0
w 304 192 304 288 0
I 208 288 304 288 0 0.5
w 208 192 208 288 0
R 208 288 112 288 1 2 2000.0 2.5 2.5 0.0 0.5
c 256 240 256 176 0 9.5123E-5 0
p 160 176 160 240 0
g 160 240 160 256 0
170 160 176 112 176 3 10.0 400.0 5.0 0.2
o 16 64 0 34 5.0 9.765625E-5 0 -1
o 8 64 0 34 5.0 4.8828125E-5 1 -1


circuit.zip > triode.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
172 304 240 272 240 0 6 0.0 0.0 -8.0 0.0 0.5 Grid Voltage
w 352 272 352 320 0
w 368 208 368 160 1
172 368 160 368 128 0 6 500.0 500.0 0.0 0.0 0.5 Plate Voltage
g 352 320 352 336 0
173 304 240 368 240 0 93.0 680.0
o 3 64 0 35 640.0 0.1 0 -1


circuit.zip > nmosnand.txt

$ 1 5.0E-6 10 54 5.0
f 272 224 336 224 4
w 336 144 336 176 0
w 336 176 336 208 0
M 336 176 400 176 0
f 272 288 336 288 4
w 336 240 336 272 0
g 336 304 336 336 0
w 240 80 336 80 0
w 336 80 336 112 0
R 240 80 176 80 0 0 40.0 5.0 0.0
w 176 288 272 288 0
L 272 224 112 224 0 false false
L 176 288 112 288 0 false false
r 336 112 336 144 0 5000.0


circuit.zip > amp-rect.txt

$ 1 5.0E-6 10 71 1.0
a 240 192 352 192 0
w 240 176 240 128 0
d 352 192 352 128 0
w 208 176 240 176 0
r 208 176 128 176 0 10000.0
w 208 176 208 256 0
w 208 256 352 256 0
d 352 256 352 192 0
r 240 128 352 128 0 10000.0
R 128 176 96 176 0 1 40.0 0.5 0.0
g 240 208 240 224 0
O 352 128 416 128 0
o 9 64 0 2 0.625 9.765625E-5
o 11 64 0 2 0.625 4.8828125E-5


circuit.zip > wheatstone.txt

v 176 352 176 64 0 0 40.0 5.0 0.0
w 320 64 320 128 0
w 320 256 320 352 0
w 320 352 176 352 0
r 256 192 320 128 0 200.0
r 320 128 384 192 0 400.0
r 256 192 320 256 0 100.0
r 320 256 384 192 0 200.0
w 176 64 320 64 0
w 256 192 384 192 0


circuit.zip > amp-diff.txt

$ 1 5.0E-6 10 57 5.0 50
a 288 192 432 192 0 15.0 -15.0
w 288 112 288 176 0
w 432 192 432 112 0
r 288 112 432 112 0 1000.0
r 192 112 288 112 0 1000.0
r 288 208 288 256 0 1000.0
g 288 256 288 304 0
r 288 208 192 208 0 1000.0
R 192 112 128 112 0 1 60.0 5.0 0.0
O 432 192 496 192 0
v 192 208 128 208 0 2 120.0 1.0 0.0
R 128 208 96 208 0 1 60.0 5.0 0.0
p 192 208 192 256 0
g 192 256 192 304 0
o 8 64 0 2 7.0 0.025 0
o 12 64 0 2 7.0 9.765625E-5 0
o 9 64 0 2 2.5 2.44140625E-5 1


circuit.zip > transformer.txt

$ 1 5.0E-6 9 54 5.0
v 176 272 176 144 0 1 60.0 10.0 0.0
w 352 224 352 272 0
T 272 192 352 192 0 100.0 1.0 -0.003935272598777283 0.004618353276268098
w 272 192 272 144 0
w 272 224 272 272 0
r 272 144 176 144 0 0.1
w 176 272 272 272 0
w 352 272 448 272 0
w 352 144 448 144 0
r 448 144 448 272 0 1000.0
w 352 192 352 144 0
o 0 64 0 3 10.0 0.0125 2
o 9 64 0 3 10.0 0.0125 1


circuit.zip > masterslaveff.txt

$ 1 5.0E-6 10 50 5.0
151 432 160 528 160 0 2 5.0
151 432 272 528 272 0 2 0.0
w 432 240 432 256 0
w 432 176 432 192 0
w 528 240 528 272 0
w 528 240 432 192 0
w 528 160 528 192 0
w 528 192 432 240 0
151 320 144 432 144 0 2 5.0
151 320 288 432 288 0 2 5.0
w 320 160 320 272 0
w 320 272 320 352 0
151 192 160 288 160 0 2 5.0
151 192 272 288 272 0 2 0.0
w 320 128 288 128 0
w 288 128 288 160 0
w 288 272 288 304 0
w 288 304 320 304 0
w 192 176 192 192 0
w 192 256 192 240 0
w 288 240 288 272 0
w 288 240 192 192 0
w 288 192 288 160 0
w 288 192 192 240 0
151 80 144 192 144 0 2 0.0
151 80 288 192 288 0 2 5.0
I 80 352 320 352 0
M 528 160 592 160 0
M 528 272 592 272 0
x 518 133 534 133 0 24 Q
x 520 321 536 321 2 24 Q
x 153 79 169 79 0 24 master
x 399 81 415 81 0 24 slave
w 80 160 80 304 0
w 80 304 80 352 0
I 48 128 48 272 0
w 48 128 80 128 0
w 48 272 80 272 0
L 48 128 48 96 0 false false
x 39 62 55 62 0 24 D
R 80 352 48 352 1 2 120.0 2.5 2.5
o 38 64 0 6 5.0 9.765625E-5 0 D
o 27 64 0 6 5.0 9.765625E-5 0 Q
o 40 64 0 6 5.0 9.765625E-5 0 clk


circuit.zip > rossler.txt

$ 3 5.0E-6 2.898875293967098 66 5.0 50
a 360 304 408 304 2 15.0 -15.0
r 360 272 408 272 0 5000000.0
c 360 240 408 240 0 1.0E-9 3.0635621976420984
w 408 240 408 272 0
w 408 272 408 304 0
w 360 272 360 296 0
w 360 272 360 240 0
g 360 312 360 328 0
c 360 360 408 360 0 1.0E-9 -0.0028565435358697752
r 360 392 408 392 0 100000.0
a 360 424 408 424 2 15.0 -15.0
w 408 360 408 392 0
w 408 392 408 424 0
w 360 416 360 392 0
w 360 392 360 360 0
g 360 432 360 448 0
w 408 240 408 200 0
a 352 120 408 120 2 15.0 -15.0
g 352 128 352 144 0
r 352 88 408 88 0 2000000.0
c 352 56 408 56 0 1.0E-9 0.6880284746244376
w 352 56 352 88 0
w 352 88 352 112 0
w 408 88 408 120 0
w 408 56 408 88 0
r 352 112 304 112 0 100000.0
w 304 112 304 168 0
w 304 168 520 168 0
w 408 200 280 200 0
w 280 200 280 144 0
w 408 56 408 16 0
a 144 304 192 304 2 15.0 -15.0
a 144 424 192 424 2 15.0 -15.0
w 192 416 192 424 0
r 192 416 360 416 0 100000.0
r 192 296 360 296 0 100000.0
w 192 296 192 304 0
w 144 296 144 256 0
r 144 256 192 256 0 10000.0
w 192 256 192 296 0
r 144 296 48 296 0 10000.0
d 96 416 144 416 0
r 96 416 96 360 0 10000.0
r 96 416 96 472 0 68000.0
w 96 360 48 360 0
w 48 360 48 296 0
w 48 296 48 16 0
w 48 16 408 16 0
r 280 56 352 56 0 200000.0
w 280 56 280 144 0
r 280 144 144 144 0 75000.0
w 144 144 144 256 0
g 144 312 144 328 0
g 144 432 144 448 0
r 144 384 192 384 0 150000.0
w 144 384 144 416 0
w 192 384 192 416 0
w 520 168 520 392 0
w 520 392 408 392 0
R 96 472 40 472 0 0 40.0 -15.0 0.0 0.0 0.5
p 408 304 480 304 0
p 408 424 480 424 0
p 408 120 480 120 0
g 480 120 480 136 0
g 480 304 480 320 0
g 480 424 480 440 0
o 60 64 0 226 5.0 3.2 0 61 z vs y
o 62 64 0 226 5.0 6.4 1 60 y vs x


circuit.zip > tlstand.txt

$ 1 1.0E-12 2.7070718156067044 50 5.0 50
171 176 192 496 192 0 0.0000000020 300.0 80 0.0
w 128 272 176 272 0
w 496 192 544 192 0
w 496 272 544 272 0
r 128 192 176 192 0 300.0
g 544 272 544 288 0
g 128 272 128 288 0
R 128 192 96 192 0 1 1500000000.0 5.0 0.0 0.0 0.5
w 544 192 544 272 0
o 4 16 0 34 5.0 0.025 0 -1


circuit.zip > amp-fullrect.txt

$ 1 5.0E-6 16 62 1.0 50
a 176 288 272 288 0 15.0 -15.0
g 176 304 176 336 0
w 272 288 272 240 0
d 272 240 176 240 0
w 272 288 304 288 0
d 304 192 304 288 0
w 176 240 176 272 0
w 176 240 176 192 0
r 176 192 304 192 0 1000.0
r 176 192 176 128 0 1000.0
r 176 128 304 128 0 1000.0
r 304 128 304 192 0 500.0
a 352 144 448 144 0 15.0 -15.0
w 304 128 352 128 0
w 352 128 352 96 0
r 352 96 448 96 0 1000.0
w 448 96 448 144 0
g 352 160 352 192 0
O 448 144 496 144 0
R 176 128 128 128 0 1 40.0 1.0 0.0
o 19 64 0 2 5.0 0.1
o 18 64 0 2 5.0 9.765625E-5


circuit.zip > npn.txt

$ 1 5.0E-6 10.812258501325767 43 2.0 50
172 240 240 208 240 0 6 0.705 0.75 0.5 0.0 0.5 Base Voltage
w 352 256 352 304 1
w 352 224 352 176 1
172 352 176 352 144 0 6 2.0 2.0 0.0 0.0 0.5 Collector Voltage
g 352 304 352 320 0
t 304 240 352 240 0 1 -4.295 0.7049999999999998 100.0
w 240 240 304 240 1


circuit.zip > ccdiff.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
179 368 160 400 160 0 1.0
c 368 160 304 160 0 1.0E-5 0
r 304 160 256 160 0 1.0
g 256 160 256 176 0
r 464 192 544 192 0 100.0
g 544 192 544 224 0
179 144 256 272 256 0 1.0
r 144 256 96 256 0 100.0
g 96 256 96 272 0
w 368 288 368 224 0
r 368 224 304 224 0 100.0
g 304 224 304 240 0
R 144 320 112 320 0 3 40.0 5.0 0.0 1.5707963267948966 0.5
w 240 288 368 288 0
o 10 64 0 33 2.5 0.05 0 -1 input
o 4 64 0 33 0.5114672824837722 0.009 0 -1 output


circuit.zip > ledflasher.txt

$ 17 5.0E-6 2.183 50 5.0 50
163 160 272 208 272 0 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0
L 480 336 480 368 0 false false 5.0 0.0
R 160 304 112 304 1 2 1000.0 2.5 2.5
w 192 240 192 112 0
162 192 112 192 64 0 1.0 0.0 0.0
r 192 64 112 64 0 250.0
g 112 64 112 112 0
162 224 112 224 64 0 1.0 0.0 0.0
162 256 112 256 64 0 1.0 0.0 0.0
162 288 112 288 64 0 1.0 0.0 0.0
162 320 112 320 64 0 1.0 0.0 0.0
w 192 64 224 64 0
w 224 64 256 64 0
w 256 64 288 64 0
w 288 64 320 64 0
w 352 240 352 112 0
d 224 240 224 208 0
d 256 240 256 208 0
d 288 240 288 208 0
d 320 240 320 208 0
162 352 112 352 64 0 1.0 0.0 0.0
w 352 64 320 64 0
d 384 240 384 208 0
d 416 240 416 208 0
d 448 240 448 208 0
d 480 240 480 208 0
w 384 192 384 208 0
w 416 176 416 208 0
w 448 160 448 208 0
w 320 208 320 192 0
w 320 192 384 192 0
w 416 176 288 176 0
w 288 176 288 208 0
w 448 160 256 160 0
w 256 160 256 208 0
w 224 208 224 144 0
w 224 144 480 144 0
w 480 144 480 208 0
w 224 112 224 144 0
w 256 112 256 160 0
w 288 112 288 176 0
w 320 112 320 192 0


circuit.zip > relaymux.txt

$ 1 5.0E-6 10.20027730826997 50 5.0 50
178 128 160 208 160 0 1 0.1 0.24999999999997224 0.05 1000000.0 0.02 50.0
178 256 192 336 192 0 2 0.1 0.24999710044544057 0.05 1000000.0 0.02 50.0
178 384 224 464 224 0 4 0.1 0.24999999999997224 0.05 1000000.0 0.02 50.0
g 128 208 128 240 0
g 256 240 256 272 0
g 384 272 384 288 0
w 128 192 96 192 0
w 256 224 224 224 0
w 384 256 352 256 0
L 96 192 96 352 0 1 false 5.0 0.0
L 224 224 224 352 0 1 false 5.0 0.0
L 352 256 352 352 0 1 false 5.0 0.0
R 128 160 96 160 0 0 40.0 5.0 0.0 0.0 0.5
w 208 144 256 144 0
w 208 176 208 192 0
w 208 192 256 192 0
w 336 128 336 80 0
w 336 80 384 80 0
w 336 160 384 160 0
w 384 160 384 128 0
w 336 176 384 176 0
w 336 208 384 208 0
w 384 208 384 224 0
M 464 64 512 64 4 2.5
M 464 96 512 96 4 2.5
M 464 112 512 112 4 2.5
M 464 144 512 144 4 2.5
M 464 160 512 160 4 2.5
M 464 192 512 192 4 2.5
M 464 208 512 208 4 2.5
M 464 240 512 240 4 2.5


circuit.zip > 555monostable.txt

$ 1 5.0E-6 10 56 5.0 50
165 208 144 320 144 0 0.0
w 208 176 208 272 0
w 208 176 176 176 0
w 208 240 128 240 0
w 176 176 176 272 0
c 176 272 176 320 0 9.999999999999999E-6 0.04950495049504963
g 176 320 176 336 0
r 176 176 176 112 0 1000.0
w 176 112 272 112 0
R 128 112 48 112 0 0 40.0 5.0 0.0
O 336 208 400 208 0
r 128 112 128 240 0 100.0
w 128 112 176 112 0
c 128 240 80 240 0 1.0E-5 0.7835212122555424
L 80 240 48 240 0 false true 5.0 0.0
o 14 64 0 6 5.0 9.765625E-5 0
o 10 64 0 6 5.0 9.765625E-5 0
h 2 7 5


circuit.zip > 3way.txt

$ 1 5.0E-6 3 44 120.0 15
v 32 320 32 80 0 1 60.0 120.0 0.0
r 496 80 496 320 0 150.0
w 32 80 112 80 0
w 416 80 496 80 0
S 112 208 192 208 0 true false 0
w 112 80 112 208 0
w 416 80 416 208 0
S 416 208 336 208 0 false false 0
w 192 192 336 192 0
w 336 224 192 224 0
w 32 320 496 320 0


circuit.zip > nmosinverter.txt

$ 1 5.0E-6 10 54 5.0
R 272 128 208 128 0 0 40.0 5.0 0.0
g 272 288 272 320 0
L 224 224 176 224 0 false false
r 272 128 272 208 0 5000.0
M 272 208 352 208 0
f 224 224 272 224 4
w 272 240 272 288 0


circuit.zip > phasecomp.txt

$ 1 5.0E-6 10 53 5.0
R 272 176 208 176 0 2 105.0 2.5 2.5
R 272 272 208 272 0 2 100.0 2.5 2.5
w 272 176 272 208 0
161 272 208 304 208 0
w 368 208 416 208 0
r 416 208 416 112 0 1000.0
r 416 208 416 304 0 1000.0
O 416 208 480 208 0
R 416 112 368 112 0 0 40.0 5.0 0.0
g 416 304 416 320 0
w 272 240 272 272 0
o 0 64 0 6 5.0 9.765625E-5 0
o 1 64 0 6 5.0 9.765625E-5 0
o 7 64 0 6 5.0 9.765625E-5 0


circuit.zip > fulladd.txt

$ 1 5.0E-6 1.5 50 5.0
154 144 272 272 272 0 2 -0.0
154 336 256 464 256 0 2 -0.0
w 272 272 304 272 0
w 304 272 336 272 0
w 336 160 272 160 0
w 336 240 272 240 0
w 272 240 272 224 0
w 272 224 144 224 0
w 272 160 272 224 0
w 288 128 464 128 0
M 592 160 624 160 2
w 112 288 144 288 0
w 144 112 80 112 0
w 80 112 80 256 0
w 80 256 144 256 0
L 80 256 48 256 2 true false
L 112 288 48 288 2 true false
L 144 224 48 224 2 true false
w 144 144 112 144 0
w 112 144 112 288 0
w 464 128 464 144 0
w 336 192 304 192 0
w 304 192 304 272 0
w 464 256 576 256 0
w 576 256 576 208 0
M 576 208 624 208 2
150 144 128 288 128 0 2 0.0
150 336 176 464 176 0 2 0.0
152 464 160 592 160 0 2 0.0


circuit.zip > opampfeedback.txt

$ 1 5.0E-6 11.251013186076355 50 5.0 50
a 192 176 320 176 0 15.0 -15.0
172 192 192 144 192 0 6 3.3 5.0 0.0 0.0 0.5 + Voltage
O 320 176 368 176 1
w 320 176 320 112 0
w 192 112 192 160 0
w 192 112 320 112 0


circuit.zip > edgedff.txt

$ 1 5.0E-6 10 50 5.0
151 320 272 432 272 0 2 -0.0
151 320 144 432 144 0 2 5.0
w 432 144 432 176 0
w 432 176 320 240 0
w 432 272 432 240 0
w 432 240 320 176 0
w 320 176 320 160 0
w 320 240 320 256 0
151 160 144 272 144 0 2 5.0
151 160 48 272 48 0 2 5.0
151 160 272 272 272 0 3 5.0
151 160 368 272 368 0 2 -0.0
w 160 64 160 80 0
w 160 80 272 112 0
w 160 128 160 112 0
w 160 112 272 80 0
w 272 80 272 48 0
w 160 288 160 304 0
w 160 304 272 336 0
w 272 336 272 368 0
w 160 352 160 336 0
w 160 336 272 304 0
w 272 128 320 128 0
w 272 288 320 288 0
w 272 176 160 240 0
w 160 32 128 32 0
w 128 416 272 416 0
w 160 272 96 272 0
w 96 160 160 160 0
w 160 384 96 384 0
L 96 384 32 384 0 false false
R 96 272 32 272 1 2 100.0 2.5 2.5
M 432 144 496 144 0
M 432 272 496 272 0
w 96 160 96 272 0
w 160 256 160 240 0
w 272 144 272 176 0
w 272 368 272 416 0
w 128 416 128 32 0
w 272 112 272 128 0
w 272 128 272 144 0
w 272 272 272 288 0
w 272 288 272 304 0
o 30 64 0 6 5.0 9.765625E-5 0 D
o 32 64 0 6 5.0 9.765625E-5 0 Q
o 31 64 0 6 5.0 9.765625E-5 0 clk


circuit.zip > inductkick.txt

$ 1 5.0E-6 10 50 5.0 42
v 176 256 176 80 0 0 40.0 5.0 0.0
w 176 256 224 256 0
w 336 256 288 256 0
s 224 256 288 256 0 false false
w 288 256 288 288 0
w 224 256 224 288 0
c 224 288 288 288 0 5.0E-10 -0.0
l 176 80 336 80 0 1.0 0
r 336 80 336 256 0 100.0
o 7 4 0 3 1.52587890625E-4 0.05
o 8 4 0 3 5.0 0.05
o 6 4 0 3 7.62939453125E-5 9.765625E-5


circuit.zip > eclnor.txt

$ 1 5.0E-6 2.2188692582893284 54 1.5 58
t 48 240 96 240 0 1 -1.3934257822325842 0.1535491976387855 100.0
t 128 240 176 240 0 1 -1.3934257822325842 0.1535491976387855 100.0
w 96 224 96 192 0
w 96 192 176 192 0
w 176 192 176 224 0
w 96 256 96 288 0
w 96 288 176 288 0
w 176 288 176 256 0
r 208 288 208 384 0 1180.0
w 176 288 208 288 0
w 208 288 240 288 0
t 288 240 240 240 0 1 -0.20927369468138468 0.6038522693256799 100.0
w 240 256 240 288 0
w 240 224 240 144 0
w 176 192 176 112 0
r 176 112 176 48 0 217.0
r 240 48 240 112 0 240.0
w 240 112 240 144 0
t 336 192 288 192 0 1 -0.3644785302182464 0.5852183980948591 100.0
w 288 208 288 240 0
w 288 176 288 48 0
w 336 192 336 112 0
r 336 48 336 112 0 250.0
w 416 48 336 48 0
w 336 48 288 48 0
w 288 48 240 48 0
w 240 48 176 48 0
d 336 192 336 240 0
d 336 240 336 288 0
r 336 288 336 384 0 2460.0
w 240 144 384 144 0
w 176 112 448 112 0
t 384 144 416 144 0 1 -0.7404232336317208 0.5992782584002211 100.0
w 416 160 416 240 0
w 416 128 416 48 0
t 448 112 480 112 0 1 -0.00657421776741567 0.6036056663680556 100.0
w 416 48 480 48 0
w 480 48 480 96 0
w 480 128 480 208 0
r 416 288 416 384 0 1500.0
r 480 288 480 384 0 1500.0
w 480 384 416 384 0
w 416 384 336 384 0
r 288 288 288 384 0 2960.0
w 208 384 288 384 0
w 288 384 336 384 0
R 208 384 160 384 0 0 40.0 -5.2 0.0 0.0 0.5
w 176 48 128 48 0
g 128 48 128 80 0
L 48 240 48 144 0 0 false -0.7 -1.4
L 128 240 128 144 0 0 false -0.7 -1.4
M 480 208 528 208 0 -1.0
M 416 272 528 272 0 -1.0
x 515 191 541 194 0 12 NOR
x 518 255 535 258 0 12 OR
w 416 240 416 272 0
w 288 288 288 240 0
w 416 288 416 272 0
w 480 208 480 288 0
x 59 278 81 282 0 16 Q1
x 146 278 168 281 0 16 Q2
x 212 246 234 250 0 16 Q3


circuit.zip > synccounter.txt

$ 3 5.0E-6 10 50 5.0
156 80 272 128 272 0 0.0
156 208 272 240 272 0 5.0
156 336 272 368 272 0 0.0
156 464 272 480 272 0 5.0
w 464 272 448 272 0
w 448 272 448 336 0
w 448 336 464 336 0
w 320 336 336 336 0
w 320 336 320 272 0
w 320 272 336 272 0
w 208 272 192 272 0
w 192 272 192 336 0
w 192 336 208 336 0
w 80 272 64 272 0
w 64 272 64 336 0
w 64 336 80 336 0
w 560 272 560 88 0
w 432 272 432 112 0
w 176 272 176 160 0
M 560 88 592 88 2 2.5
R 64 272 32 272 0 0 40.0 5.0 0.0
R 80 384 32 384 1 2 200.0 2.5 2.5
w 80 304 80 384 0
w 176 272 192 272 0
w 80 384 208 384 0
w 208 384 208 304 0
w 336 304 336 384 0
w 336 384 208 384 0
w 336 384 464 384 0
w 464 384 464 304 0
150 336 200 336 272 1 2 0.0
w 304 272 304 136 0
w 304 136 328 136 0
w 328 136 328 200 0
w 344 160 344 200 0
w 176 160 344 160 0
150 464 200 464 272 1 3 0.0
w 344 160 472 160 0
w 472 160 472 200 0
w 328 136 464 136 0
w 464 136 464 200 0
w 432 112 456 112 0
w 456 112 456 200 0
M 472 160 592 160 2 2.5
M 464 136 592 136 2 2.5
M 456 112 592 112 2 2.5


circuit.zip > mr.txt

$ 1 2.0E-8 1.3804574186067096 52 5.0 50
m 256 144 256 288 0 100.0 16000.0 0 1.0E-8 1.0E-10
g 256 320 256 336 0
w 256 288 256 320 1
172 256 144 256 112 0 6 5.0 5.0 -5.0 0.0 0.5 Voltage
o 0 8 0 35 5.0 0.05 0 -1
o 0 8 2 35 640.0 9.765625E-5 1 -1 resistance


circuit.zip > coupled2.txt

$ 1 5.0E-6 11.251013186076355 63 5.0 50
l 208 160 320 160 0 1.0 -0.001826652874703726
l 320 160 432 160 0 1.0 3.59207891615332E-4
c 208 160 208 288 0 1.0E-6 0.7201238956969189
c 320 160 320 288 0 1.9999999999999998E-5 0.2893723277533031
c 432 160 432 288 0 1.0E-6 -1.5075704507629162
r 208 288 320 288 0 1.0
r 320 288 432 288 0 1.0
g 320 288 320 304 0
w 432 160 480 160 0
w 432 288 480 288 0
p 480 160 480 288 0
w 208 160 160 160 0
w 208 288 160 288 0
p 160 160 160 288 0
o 2 64 0 35 5.0 0.00625 0 -1
o 4 64 0 35 5.0 0.00625 1 -1
o 13 64 0 226 2.8 2.8 2 10


circuit.zip > pnp.txt

$ 1 5.0E-6 11.251013186076355 43 2.0 50
172 208 176 176 176 0 6 1.2975 1.5 1.25 0.0 0.5 Base Voltage
w 320 192 320 240 1
w 320 160 320 112 1
w 208 176 272 176 1
t 272 176 320 176 0 -1 1.2975 -0.7024999999999999 100.0
R 320 112 320 80 0 0 40.0 2.0 0.0 0.0 0.5
172 320 240 320 272 0 6 0.0 2.0 0.0 0.0 0.5 Collector Voltage


circuit.zip > rtlnand.txt

$ 1 5.0E-6 10 52 5.0
R 368 64 320 64 0 0 40.0 3.6 0.0
g 368 336 368 368 0
t 320 208 368 208 0 1 0.6378429407740765 0.6475693325578884
w 368 160 368 192 0
r 368 160 368 64 0 640.0
t 320 256 368 256 0 1 0.6376732762947126 0.6550300979283231
t 320 304 368 304 0 1 0.6375679404402763 0.6608122760347422
w 368 224 368 240 0
w 368 272 368 288 0
w 368 320 368 336 0
r 320 208 240 208 0 470.0
r 240 256 320 256 0 470.0
r 240 304 320 304 0 470.0
L 240 208 208 208 0 false false 3.6 0.0
L 240 256 208 256 0 false false 3.6 0.0
L 240 304 208 304 0 false false 3.6 0.0
M 368 160 432 160 0


circuit.zip > tlmatch2.txt

$ 1 1.0E-11 12.682493960703473 52 4.0 50
171 48 112 192 112 0 1.0E-8 75.0 64 0.0
r 48 112 0 112 0 75.0
w 0 176 48 176 0
w 464 112 496 112 0
w 464 176 496 176 0
r 496 112 496 176 0 300.0
v 0 176 0 112 0 1 1.0E8 5.0 0.0 0.0 0.03
g 192 176 192 192 0
v 0 240 0 304 0 1 1.0E8 5.0 0.0 0.0 0.5
r 0 240 48 240 0 75.0
w 0 304 48 304 0
171 48 240 192 240 0 1.17621E-8 75.0 64 0.0
w 464 240 496 240 0
w 464 304 496 304 0
g 192 304 192 320 0
g 48 176 48 192 0
g 48 304 48 320 0
r 496 240 496 304 0 300.0
w 192 112 192 32 0
w 192 32 208 32 0
w 192 176 208 176 0
w 208 176 208 96 0
w 192 112 224 112 0
w 208 176 224 176 0
g 336 96 336 112 0
171 224 112 288 112 0 1.7621000000000001E-9 75.0 64 0.0
g 288 176 288 192 0
171 208 32 336 32 0 3.4358E-9 75.0 64 0.0
171 304 112 464 112 0 1.0E-8 300.0 64 0.0
171 304 240 464 240 0 1.0E-8 300.0 64 0.0
w 288 176 304 176 0
w 288 112 304 112 0
w 192 240 304 240 0
w 192 304 304 304 0
g 464 304 464 320 0
g 464 176 464 192 0
o 5 64 1 51 0.15625 1.220703125E-5 0 -1 matched
o 17 64 1 51 0.15625 2.44140625E-5 1 -1 mismatched


circuit.zip > digcompare.txt

$ 3 5.0E-6 1.5 50 5.0
L 64 88 64 56 2 true false 5.0 0.0
w 64 88 88 88 0
I 88 88 88 144 0
L 112 88 112 56 2 true false 5.0 0.0
L 200 88 200 56 2 true false 5.0 0.0
L 248 88 248 56 2 true false 5.0 0.0
w 112 88 136 88 0
I 136 88 136 144 0
154 304 176 360 176 1 2 0.0
w 64 88 64 168 0
w 64 168 304 168 0
w 200 88 200 184 0
w 200 184 304 184 0
154 304 216 360 216 1 2 0.0
w 112 88 112 208 0
w 112 208 304 208 0
w 248 88 248 224 0
w 248 224 304 224 0
151 304 256 360 256 1 2 5.0
w 200 184 200 264 0
w 200 264 304 264 0
w 360 216 360 192 0
w 416 280 304 280 0
151 328 312 400 312 1 3 5.0
w 88 304 328 304 0
w 136 312 328 312 0
w 304 280 304 320 0
w 304 320 328 320 0
151 328 352 400 352 1 3 5.0
w 304 320 304 360 0
w 304 360 328 360 0
w 416 184 416 280 0
151 432 312 504 312 1 3 0.0
w 360 256 432 256 0
w 432 256 432 304 0
w 400 312 432 312 0
w 400 352 432 352 0
w 432 352 432 320 0
152 360 184 416 184 1 2 0.0
w 200 344 328 344 0
w 200 264 200 344 0
w 248 224 248 352 0
w 248 352 328 352 0
I 416 184 512 184 0
M 504 312 600 312 0 2.5
M 512 184 600 184 0 2.5
x 81 37 97 37 0 24 A
x 219 38 235 38 0 24 B
x 545 169 561 169 0 16 A=B
w 512 184 512 392 0
w 504 312 504 408 0
153 512 400 576 400 1 2 0.0
w 504 408 512 408 0
M 576 400 600 400 0 2.5
x 546 298 562 298 0 16 A & lt; B
x 546 374 562 374 0 16 A & gt; B
w 88 144 88 248 0
w 88 248 88 304 0
w 88 248 304 248 0
w 136 144 136 312 0


circuit.zip > butter10lo.txt

$ 1 5.0E-6 5.023272298708815 49 5.0 50
c 208 176 208 288 0 5.9051646250635805E-6 4.062633211426473
l 144 176 208 176 0 0.012448659190544548 0.053140078678806095
w 464 176 528 176 0
r 528 176 528 288 0 50.0
g 208 288 208 304 0
g 528 288 528 304 0
O 528 176 576 176 0
170 144 176 112 176 2 100.0 2000.0 5.0 0.15
c 272 176 272 288 0 5.369543031057315E-6 5.1257083029780235
l 208 176 272 176 0 0.01442033310922977 0.09832852911113443
g 272 288 272 304 0
c 336 176 336 288 0 4.112858198910477E-6 4.157511982611728
l 272 176 336 176 0 0.012016178653842758 0.09606883211091816
g 336 288 336 304 0
c 400 176 400 288 0 2.427517293683718E-6 2.7175532901374186
l 336 176 400 176 0 0.0082809859705 0.06809087838027278
g 400 288 400 304 0
c 464 176 464 288 0 4.979463676217806E-7 1.9434101865833442
l 400 176 464 176 0 0.0037033695101520102 0.04419890622586078
g 464 288 464 304 0
o 6 16 0 34 10.0 9.765625E-5 0 -1


circuit.zip > volttriple.txt

$ 1 5.0E-6 10 53 15.0 45
d 208 160 208 256 0
d 208 256 288 256 0
w 288 256 288 160 0
c 208 160 288 160 0 9.999999999999999E-5 0
c 208 256 208 336 0 9.999999999999999E-5 0
d 288 160 368 160 0
c 368 160 368 336 0 9.999999999999999E-5 0
w 368 160 432 160 0
r 432 160 432 336 0 40000.0
g 208 336 208 352 0
g 368 336 368 352 0
g 432 336 432 352 0
R 208 160 160 160 0 1 120.0 15.0 0.0
o 12 64 0 3 80.0 0.00625
o 8 64 0 3 80.0 0.00625


circuit.zip > samplenhold.txt

$ 1 5.0E-6 10 74 5.0 81
f 192 112 192 160 1
f 192 224 192 160 0
w 192 112 256 112 0
w 256 112 256 224 0
I 192 224 256 224 0 0.5
L 192 224 192 304 0 true true 5.0 0.0
w 208 160 304 160 0
c 304 160 304 256 0 1.0E-7 1.9962454782690886
g 304 256 304 304 0
a 352 160 464 160 1 15.0 -15.0
w 304 160 304 144 0
w 304 144 352 144 0
w 352 176 352 224 0
w 352 224 464 224 0
w 464 224 464 160 0
O 464 160 512 160 0
R 144 160 96 160 0 1 40.0 2.5 2.5
w 144 160 176 160 0
x 157 341 173 341 0 20 sample
o 16 64 0 2 6.0 9.765625E-5 0
o 15 64 0 2 6.0 9.765625E-5 1


circuit.zip > voltdouble2.txt

$ 1 5.0E-6 10 50 15.0 45
R 224 176 192 176 0 1 40.0 15.0 0.0
c 224 176 304 176 0 9.999999999999999E-5 0
d 304 288 304 176 0
d 304 176 400 176 0
c 400 176 400 288 0 9.999999999999999E-5 0
g 304 288 304 304 0
g 400 288 400 304 0
w 400 176 464 176 0
r 464 176 464 288 0 20000.0
g 464 288 464 304 0
o 0 64 0 3 20.0 0.4
o 8 64 0 3 40.0 0.025


circuit.zip > voltdouble.txt

$ 1 5.0E-6 10 53 15.0 45
v 160 208 160 112 0 1 40.0 15.0 0.0
w 160 112 224 112 0
d 224 112 336 112 0
c 336 112 336 208 0 9.999999999999999E-5 0
c 336 208 336 304 0 9.999999999999999E-5 0
w 160 208 336 208 0
w 224 112 224 304 0
d 336 304 224 304 0
w 336 112 432 112 0
w 336 304 432 304 0
r 432 112 432 304 0 10000.0
o 0 64 0 3 5.0 0.2
o 10 64 0 2 10.0 7.8125E-4


circuit.zip > trans-diffamp-cursrc.txt

$ 1 5.0E-6 5.6 60 15.0 52
t 208 192 240 192 0 1 -12.552345476990716 0.5746836796974437
t 432 192 368 192 0 1 -5.407801804527631 0.5746836796974437
w 240 208 240 240 0
w 368 208 368 240 0
r 368 128 368 48 0 7500.0
w 240 48 368 48 0
R 240 48 208 48 0 0 40.0 15.0 0.0
R 208 192 160 192 0 1 40.0 4.0 0.0
R 496 192 528 192 0 1 40.0 4.0 0.0
p 432 192 432 256 0
g 432 256 432 288 0
w 368 128 368 176 0
w 240 48 240 176 0
O 368 128 448 128 0
x 186 174 202 174 0 14 in 1
x 409 175 425 175 0 14 in 2
w 240 240 304 240 0
w 304 240 368 240 0
t 256 288 304 288 0 1 -14.336812066191886 0.5922636176064682
w 304 240 304 272 1
w 304 368 256 368 0
r 256 288 256 368 0 2700.0
r 304 304 304 368 0 1000.0
r 256 288 176 288 0 13000.0
g 176 288 176 304 0
R 256 368 176 368 0 0 40.0 -15.0 0.0
v 432 192 496 192 0 5 300.0 0.4 0.0
o 7 32 0 2 0.15625 9.765625E-5 0
o 9 32 0 2 0.3125 9.765625E-5 0
o 13 32 0 2 20.0 9.765625E-5 1


circuit.zip > cmosinverterslow.txt

$ 1 3.0E-13 10 52 5.0
f 272 144 336 144 1
f 272 240 336 240 0
w 336 160 336 192 0
w 336 192 336 224 0
w 272 144 272 192 0
w 272 192 272 240 0
M 336 192 400 192 0
R 336 128 336 80 0 0 40.0 5.0 0.0
g 336 256 336 288 0
w 272 192 208 192 0
c 208 192 208 256 0 1.0000000000000001E-11 4.81990995096849
g 208 256 208 288 0
r 208 192 144 192 0 100.0
L 144 192 96 192 0 false false
o 10 64 0 2 5.0 0.0015625
o 0 64 0 3 5.0 9.765625E-5
o 1 64 0 3 7.62939453125E-5 9.765625E-5


circuit.zip > cube.txt

$ 1 5.0E-6 10.391409633455755 50 5.0 50
r 224 144 384 144 0 100.0
r 384 144 384 304 0 100.0
r 384 304 224 304 0 100.0
r 224 304 224 144 0 100.0
r 224 144 288 80 0 100.0
r 384 144 448 80 0 100.0
r 448 80 288 80 0 100.0
r 448 80 448 240 0 100.0
r 448 240 384 304 0 100.0
r 224 304 288 240 0 100.0
r 288 240 448 240 0 100.0
r 288 240 288 80 0 100.0
82 448 80 448 32 0 0 40.0 5.0 0.0 0.0 0.5
g 224 304 224 336 0


circuit.zip > 555int.txt

$ 3 5.0E-6 5 64 7.0
a 288 168 384 168 1 5.0 0.0
a 288 264 384 264 1 5.0 0.0
r 240 56 240 104 0 5000.0
r 240 104 240 152 0 5000.0
w 240 152 240 280 0
r 240 280 240 328 0 5000.0
g 240 328 240 336 0
w 240 152 288 152 0
w 240 104 272 104 0
w 272 104 272 280 0
w 272 280 288 280 0
w 464 176 464 192 0
w 384 184 384 192 0
w 384 192 464 240 0
w 464 240 464 256 0
w 384 240 384 248 0
w 384 240 464 192 0
R 240 56 240 24 0 0 40.0 10.0 0.0
R 88 56 88 24 0 0 40.0 10.0 0.0
r 88 56 88 120 0 10000.0
r 88 120 88 184 0 10000.0
w 88 120 216 120 0
w 216 120 216 352 0
w 88 184 88 248 0
c 88 248 88 352 0 3.0E-7 0
g 88 352 88 368 0
r 384 368 464 368 0 10000.0
w 464 176 496 176 0
w 464 368 496 368 0
153 384 256 464 256 1 2 5.0
153 384 176 464 176 1 2 0.0
w 496 176 496 368 0
O 464 256 544 256 0
w 88 184 288 184 0
w 88 248 288 248 0
t 328 368 296 368 0 1 -7.876671689823544 4.999999997999999E-10
w 216 352 296 352 0
g 296 384 296 400 0
w 328 368 384 368 0
x 120 115 136 115 0 16 discharge
x 129 178 145 178 0 16 trigger
x 120 242 136 242 0 16 threshold
w 272 104 272 56 0
x 284 62 300 62 0 16 control
o 24 16 0 3 10.0 7.8125E-4 0
o 32 32 0 10 5.0 9.765625E-5 1


circuit.zip > majority.txt

$ 1 5.0E-6 1.5 50 5.0
L 128 144 64 144 0 true false
L 128 208 64 208 0 true false
L 128 272 64 272 0 false false
w 128 208 128 176 0
w 128 176 192 176 0
w 128 144 144 144 0
w 144 144 192 144 0
w 128 208 128 224 0
w 128 224 192 224 0
w 144 144 144 304 0
w 144 304 192 304 0
w 128 272 128 256 0
w 128 256 192 256 0
w 128 272 128 336 0
w 128 336 192 336 0
151 320 240 480 240 0 3 0.0
w 320 160 320 224 0
w 320 256 320 320 0
151 192 160 320 160 0 2 5.0
151 192 240 320 240 0 2 5.0
151 192 320 320 320 0 2 5.0
M 480 240 544 240 0


circuit.zip > indmultfreq.txt

$ 1 5.0E-6 10 53 5.0 46
v 176 96 176 32 2 1 30.0 5.0 0.0
r 176 32 336 32 0 200.0
w 176 96 336 96 0
v 176 192 176 128 2 1 80.0 5.0 0.0
r 176 128 336 128 0 200.0
w 176 192 336 192 0
v 176 288 176 224 2 1 200.0 5.0 0.0
w 176 288 336 288 0
r 176 224 336 224 0 200.0
l 336 32 336 96 0 0.4 0.012667996353689499
l 336 128 336 192 0 0.4 0.005302775030447975
l 336 224 336 288 0 0.4 0.009241480515348987
o 9 64 0 17 2.5 0.025
o 10 64 0 17 5.0 0.025
o 11 64 0 17 5.0 0.025


circuit.zip > cap.txt

$ 1 5.0E-6 16 50 5.0
v 96 336 96 64 0 0 40.0 5.0 0.0
S 256 144 256 64 0 false false 0
w 96 64 240 64 0
w 272 64 400 64 0
w 400 64 400 336 0
c 256 144 256 256 0 1.9999999999999996E-4 0
r 256 256 256 336 0 100.0
w 96 336 256 336 0
w 256 336 400 336 0
o 5 128 0 3 5.0 0.05
h 2 6 5


circuit.zip > 555square.txt

$ 1 5.0E-6 5.023272298708815 64 7.0 50
w 272 176 240 176 0
r 240 176 240 240 0 10000.0
w 240 240 272 240 0
w 240 240 240 272 0
w 240 272 272 272 0
c 240 272 240 336 0 3.0E-7 6.6394202099608295
g 240 336 240 352 0
r 240 176 240 112 0 10000.0
w 240 112 336 112 0
R 240 112 176 112 0 0 40.0 10.0 0.0 0.0 0.5
O 400 208 464 208 0
165 272 144 288 144 2 10.0
w 336 112 400 112 0
w 400 112 400 176 0
o 5 32 0 35 10.0 0.0015625 0 -1
o 10 32 0 42 10.0 9.765625E-5 1 -1


circuit.zip > 3-f211.txt

$ 1 5.0E-6 10.812258501325767 50 5.0 50
f 288 288 352 288 6 -1.75
w 352 272 352 240 0
w 352 240 352 208 0
f 288 192 352 192 7 3.25
w 288 192 288 240 0
w 288 240 288 288 0
R 352 176 352 128 0 0 40.0 5.0 0.0 0.0 0.5
M 352 240 400 240 1 2.5
L 288 240 240 240 1 0 false 5.0 0.0
R 352 304 352 352 0 0 40.0 2.5 0.0 0.0 0.5


circuit.zip > trans-diffamp.txt

$ 1 5.0E-6 5.6 68 15.0 60
t 144 208 176 208 0 1 -15.095449051751599 0.5174493144866628
t 368 208 304 208 0 1 -8.193950382547882 0.5162742583726527
w 176 224 176 256 0
w 304 224 304 256 0
r 176 256 240 256 0 1000.0
r 240 256 304 256 0 1000.0
r 240 256 240 336 0 75000.0
r 304 128 304 48 0 75000.0
w 176 48 304 48 0
R 176 48 144 48 0 0 40.0 15.0 0.0
R 240 336 176 336 0 0 40.0 -15.0 0.0
R 144 208 96 208 0 1 40.0 0.1 0.0
v 368 208 432 208 0 1 40.0 -0.1 0.0
R 432 208 464 208 0 1 200.0 0.1 0.0
p 368 208 368 272 0
g 368 272 368 304 0
w 304 128 304 192 0
w 176 48 176 192 0
O 304 128 384 128 0
x 122 190 138 190 0 14 in 1
x 345 191 361 191 0 14 in 2
o 11 32 0 2 0.15625 9.765625E-5 0
o 14 32 0 2 0.3125 9.765625E-5 0
o 18 32 0 2 12.0 9.765625E-5 1 output


circuit.zip > ccinductor.txt

$ 1 5.0E-6 10.20027730826997 48 5.0 50
179 240 80 256 80 1024 1.0
179 240 256 272 256 1024 -1.0
R 128 176 96 176 0 1 40.0 5.0 0.0 0.0 0.5
r 128 176 224 176 0 50.0
R 480 176 448 176 0 1 40.0 5.0 0.0 0.0 0.5
r 480 176 544 176 0 50.0
l 544 176 544 272 0 0.1 -0.05978684403333334
g 544 272 544 288 0
w 240 112 224 112 0
w 224 112 224 176 0
r 336 80 400 80 0 100.0
g 400 80 400 96 0
w 336 144 336 208 0
w 240 288 240 208 0
w 240 208 336 208 0
w 336 256 384 256 0
r 384 256 384 368 0 100.0
g 384 368 384 384 0
w 336 320 336 352 0
w 336 352 224 352 0
w 224 352 224 176 0
w 240 288 176 288 0
c 176 288 176 368 0 1.0E-5 5.9786844033333315
g 176 368 176 384 0
o 2 64 0 35 5.0 0.1 0 -1
o 4 64 0 35 5.0 0.1 0 -1


circuit.zip > ringmod.txt

$ 17 5.0E-6 1.7725424121461644 41 3.0 50
d 272 176 320 128 1 0.805904783
d 320 128 368 176 1 0.805904783
d 368 176 320 224 1 0.805904783
d 320 224 272 176 1 0.805904783
169 144 144 208 144 0 0.1 1.0 0.36188085234266 -0.10938222138187827
w 208 144 208 128 0
169 496 208 432 208 0 0.1 1.0 -0.33106614006595897 0.01591880270109881
w 368 144 368 176 0
w 432 208 432 256 0
w 272 256 272 176 0
w 272 256 432 256 0
w 432 144 368 144 0
w 208 128 320 128 0
w 208 208 208 224 0
w 208 224 320 224 0
w 208 176 240 176 0
w 240 176 240 288 0
w 240 288 288 288 0
w 432 176 400 176 0
w 400 176 400 288 0
w 400 288 336 288 0
v 528 144 528 208 0 1 300.0 2.4 0.0 0.0 0.5
v 112 144 112 208 0 1 200.0 2.0 0.0 0.0 0.5
w 288 288 288 336 0
w 336 288 336 336 0
r 288 336 336 336 0 1.0
w 496 208 528 208 0
w 496 144 528 144 0
w 112 208 144 208 0
w 112 144 144 144 0
r 400 288 432 256 0 1000.0
g 528 208 528 224 0
g 112 208 112 224 0
g 208 224 208 240 0
o 21 8 0 38 2.5 0.4 0 -1
o 22 8 0 38 2.5 0.4 0 -1
o 25 8 0 38 1.0229345649675443 0.6546781215792284 1 -1


circuit.zip > hfadc.txt

$ 3 5.0E-6 11.251013186076355 50 5.0 50
166 360 112 384 112 1 4
R 408 160 448 160 0 0 40.0 25.5 0.0
w 408 112 488 112 0
w 488 112 488 184 0
a 160 272 224 272 2 15.0 -15.0
r 160 240 224 240 0 100000.0
w 224 240 224 272 0
w 488 184 160 184 0
r 160 184 160 240 0 100000.0
w 160 240 160 264 0
w 120 112 120 280 0
R 120 112 80 112 0 4 5.0 12.8 12.8
r 120 280 160 280 0 100000.0
g 160 352 160 368 0
r 160 280 160 352 0 100000.0
167 272 112 280 112 1 4
w 120 112 272 112 0
R 272 160 232 160 0 0 40.0 25.5 0.0
167 272 272 296 272 1 4
w 224 272 272 272 0
R 272 320 232 320 0 0 40.0 1.5 0.0
w 320 112 352 112 0
w 320 128 344 128 0
w 320 144 336 144 0
w 320 160 328 160 0
w 328 160 360 160 0
w 336 144 360 144 0
w 344 128 360 128 0
w 328 160 328 256 0
w 336 144 336 240 0
w 344 128 344 224 0
w 352 112 352 208 0
w 352 112 360 112 0
M 352 208 440 208 0 2.5
M 344 224 456 224 0 2.5
M 336 240 472 240 0 2.5
M 328 256 488 256 0 2.5
M 320 272 504 272 0 2.5
M 320 288 520 288 0 2.5
M 320 304 536 304 0 2.5
M 320 320 552 320 0 2.5
o 33 64 0 6 5.0 9.765625E-5 0
o 34 64 0 6 5.0 9.765625E-5 0
o 35 64 0 6 5.0 9.765625E-5 0
o 36 64 0 6 5.0 9.765625E-5 0
o 37 64 0 6 5.0 9.765625E-5 0
o 38 64 0 6 5.0 9.765625E-5 0
o 39 64 0 6 5.0 9.765625E-5 0
o 40 64 0 6 5.0 9.765625E-5 0


circuit.zip > r2rladder.txt

$ 1 5.0E-6 10 64 5.0
160 160 144 160 240 0
160 240 144 240 240 0
160 320 144 320 240 0
g 144 240 144 288 0
g 224 240 224 288 0
g 304 240 304 288 0
w 176 192 192 192 0
w 176 240 176 256 0
w 176 256 256 256 0
w 256 256 256 240 0
w 256 256 336 256 0
w 336 256 336 240 0
w 192 192 192 320 0
w 256 192 272 192 0
w 272 192 272 320 0
w 336 192 352 192 0
w 352 192 352 320 0
L 192 320 192 352 0 false false
L 272 320 272 352 0 false false
L 352 320 352 352 0 true false
r 160 144 160 80 0 100000.0
r 240 144 240 80 0 100000.0
r 320 144 320 80 0 100000.0
r 160 80 240 80 0 50000.0
r 240 80 320 80 0 50000.0
r 320 80 400 80 0 100000.0
g 400 80 400 112 0
w 416 256 416 224 0
w 528 224 528 272 0
O 528 272 592 272 1
w 336 256 416 256 0
r 416 224 528 224 0 50100.0
g 416 288 416 320 0
a 416 272 528 272 0 20.0 -20.0
r 160 80 80 80 0 50000.0
r 80 80 80 144 0 100000.0
160 80 144 80 240 0
w 96 192 112 192 0
w 112 192 112 320 0
g 64 240 64 288 0
L 112 320 112 352 0 true false
R 80 80 32 80 0 0 40.0 16.0 0.0
w 96 240 96 256 0
w 96 256 176 256 0


circuit.zip > leadingedge.txt

$ 1 4.0E-9 4 54 5.0
f 160 144 208 144 1
f 160 240 208 240 0
w 208 160 208 192 0
w 208 192 208 224 0
R 208 128 208 80 0 0 40.0 5.0 0.0
g 208 256 208 288 0
g 288 256 288 288 0
w 288 192 320 192 0
w 320 192 320 144 0
w 320 192 320 240 0
f 320 144 368 144 1
f 320 240 368 240 0
w 368 160 368 192 0
w 368 192 368 224 0
g 368 256 368 288 0
R 368 128 368 80 0 0 40.0 5.0 0.0
c 208 192 288 192 0 1.0E-9 0.22165573446504094
r 288 192 288 256 0 1000.0
w 160 144 160 192 0
w 160 240 160 192 0
w 160 192 128 192 0
w 128 192 128 160 0
w 128 192 128 224 0
f 80 240 128 240 0
f 80 144 128 144 1
w 80 144 80 192 0
w 80 192 80 240 0
R 128 128 128 80 0 0 40.0 5.0 0.0
g 128 256 128 288 0
w 368 192 400 192 0
w 400 192 400 144 0
w 400 192 400 240 0
f 400 240 448 240 0
f 400 144 448 144 1
w 448 160 448 192 0
w 448 192 448 224 0
g 448 256 448 288 0
R 448 128 448 80 0 0 40.0 5.0 0.0
M 448 192 496 192 0
R 80 192 32 192 0 2 200000.0 2.5 2.5
o 39 32 0 2 5.0 9.765625E-5 0
o 38 32 0 2 5.0 9.765625E-5 0
h 2 17 16


circuit.zip > sawtooth.txt

$ 1 5.0E-6 10.634267539816555 63 5.0 50
a 160 224 272 224 0 15.0 -15.0 1000000.0
w 160 240 160 304 0
w 160 304 272 304 0
r 272 224 272 304 0 100000.0
a 384 240 496 240 0 15.0 -15.0 1000000.0
r 272 304 352 304 0 40000.0
w 352 304 496 304 0
w 496 304 496 240 0
w 496 240 496 176 0
c 384 176 496 176 0 5.0E-7 4.758165877822716
w 384 176 384 224 0
g 384 256 384 272 0
O 496 240 560 240 0
w 160 208 128 208 0
g 128 208 128 240 0
r 384 176 320 176 0 5000.0
r 384 224 320 224 0 40000.0
d 272 176 320 176 1 0.805904783
d 320 224 272 224 1 0.805904783
w 272 176 272 224 0
o 12 64 0 42 10.0 9.765625E-5 0 -1


circuit.zip > longdist.txt

$ 1 5.0E-6 9.001713130052181 39 120.0 42
v 64 208 64 80 0 1 60.0 120.0 0.0 0.0 0.5
w 240 160 240 208 1
T 160 128 240 128 0 0.5 1000.0 -1.0023486497286795 6.35743697744416E-4
w 160 128 160 80 2
w 160 160 160 208 1
r 160 80 64 80 0 10.0
w 64 208 160 208 0
w 240 128 240 80 2
r 240 80 432 80 0 500.0
r 240 208 432 208 0 500.0
w 432 80 432 128 0
w 432 208 432 160 0
T 432 128 496 128 0 1000000.0 0.0010 -6.357436977444156E-4 0.45338545557553267
w 496 128 496 80 2
w 496 80 560 80 0
w 496 160 496 208 1
w 496 208 560 208 0
r 560 80 560 208 0 200.0
v 64 384 64 256 0 1 60.0 120.0 0.0 0.0 0.5
r 64 256 160 256 0 10.0
r 160 256 512 256 0 500.0
r 160 384 512 384 0 500.0
w 64 384 160 384 0
w 512 256 560 256 0
w 512 384 560 384 0
r 560 256 560 384 0 200.0
g 432 208 432 224 0
g 560 208 560 224 0
o 17 64 1 35 80.0 9.765625E-5 0 -1
o 25 64 1 35 5.0 9.765625E-5 1 -1


circuit.zip > johnsonctr.txt

$ 3 5.0E-6 10.391409633455755 50 5.0 50
155 88 360 104 360 1 5.0
155 168 360 184 360 1 5.0
155 248 360 256 360 1 5.0
155 328 360 344 360 1 5.0
155 408 360 424 360 1 5.0
w 456 392 456 416 0
w 456 416 64 416 0
w 64 416 64 360 0
w 64 360 88 360 0
w 88 376 80 376 0
w 80 376 80 440 0
w 168 376 160 376 0
w 160 376 160 440 0
w 248 376 240 376 0
w 240 376 240 440 0
w 328 376 320 376 0
w 320 376 320 440 0
w 408 376 400 376 0
w 400 376 400 440 0
w 80 440 160 440 0
w 160 440 240 440 0
w 240 440 320 440 0
w 320 440 400 440 0
R 80 440 24 440 1 2 300.0 2.5 2.5 0.0 0.5
150 128 312 128 256 1 2 5.0
150 168 312 168 256 1 2 0.0
150 208 312 208 256 1 2 0.0
150 248 312 248 256 1 2 0.0
150 288 312 288 256 1 2 0.0
150 328 312 328 256 1 2 0.0
150 368 312 368 256 1 2 0.0
150 408 312 408 256 1 2 0.0
150 448 312 448 256 1 2 0.0
150 88 312 88 256 1 2 0.0
w 64 360 64 312 0
w 64 312 80 312 0
w 136 392 136 344 0
w 136 344 96 344 0
w 96 344 96 312 0
w 120 312 120 320 0
w 120 320 456 320 0
w 456 320 456 312 0
w 136 312 160 312 0
w 160 312 160 360 0
w 160 360 168 360 0
w 456 320 456 360 0
w 216 360 216 312 0
w 216 312 240 312 0
w 216 392 224 392 0
w 224 392 224 336 0
w 224 336 176 336 0
w 176 336 176 312 0
w 280 312 280 336 0
w 280 336 224 336 0
w 296 360 296 312 0
w 296 312 320 312 0
w 376 360 376 312 0
w 376 312 400 312 0
w 200 312 200 344 0
w 200 344 136 344 0
w 360 312 360 328 0
w 256 328 256 312 0
w 296 392 304 392 0
w 256 328 304 328 0
w 304 328 304 392 0
w 304 328 360 328 0
w 336 312 336 336 0
w 336 336 384 336 0
w 384 336 440 336 0
w 440 336 440 312 0
w 384 336 384 392 0
w 384 392 376 392 0
w 416 312 416 328 0
w 416 328 464 328 0
w 464 328 464 392 0
w 464 392 456 392 0
w 88 256 88 40 0
w 88 40 456 40 0
w 168 256 168 64 0
w 168 64 456 64 0
w 248 256 248 88 0
w 248 88 456 88 0
M 456 40 488 40 0 2.5
M 456 64 488 64 0 2.5
M 456 88 488 88 0 2.5
w 328 256 328 112 0
w 328 112 456 112 0
w 408 256 408 136 0
w 408 136 456 136 0
M 456 112 488 112 0 2.5
M 456 136 488 136 0 2.5
w 456 160 128 160 0
w 456 184 208 184 0
w 456 208 288 208 0
w 456 232 368 232 0
w 456 256 448 256 0
w 128 160 128 256 0
w 208 184 208 256 0
w 288 208 288 256 0
w 368 232 368 256 0
M 456 160 488 160 0 2.5
M 456 184 488 184 0 2.5
M 456 208 488 208 0 2.5
M 456 232 488 232 0 2.5
M 456 256 488 256 0 2.5
w 136 360 144 360 0
w 144 360 144 448 0
w 144 360 160 360 0
w 216 360 232 360 0
w 232 360 232 448 0
w 232 360 248 360 0
w 296 360 312 360 0
w 312 360 328 360 0
w 312 360 312 448 0
w 376 360 392 360 0
w 392 360 392 448 0
w 392 360 408 360 0
w 456 360 472 360 0
w 472 360 472 448 0
M 144 448 144 464 0 2.5
M 232 448 232 464 0 2.5
M 312 448 312 464 0 2.5
M 392 448 392 464 0 2.5
M 472 448 472 464 0 2.5


circuit.zip > pmosfet.txt

$ 1 5.0E-6 12.185319768402522 50 5.0 50
172 304 240 272 240 0 6 2.5 5.0 0.0 0.0 0.5 Gate Voltage
w 352 256 352 304 0
w 352 224 352 176 1
f 304 240 352 240 1 1.5
172 352 304 352 320 0 6 3.0 5.0 0.0 0.0 0.5 Drain Voltage
R 352 176 352 160 0 0 40.0 5.0 0.0 0.0 0.5
o 3 64 0 35 2.5 0.1 0 -1


circuit.zip > cmosnor.txt

$ 0 5.0E-6 10 50 5.0
f 272 144 336 144 5
w 336 160 336 192 0
R 336 128 336 80 0 0 40.0 5.0 0.0
f 272 208 336 208 5
w 336 224 336 240 0
w 336 240 336 256 0
f 272 272 336 272 4
M 336 240 400 240 0
f 176 272 240 272 4
w 240 240 240 256 0
w 240 240 336 240 0
g 240 288 240 320 0
g 336 288 336 320 0
w 272 208 272 272 0
w 176 144 176 272 0
w 176 144 272 144 0
L 176 144 128 144 0 false false
L 272 208 128 208 0 false false


circuit.zip > tl.txt

$ 1 5.0E-12 10.391409633455755 50 5.0 50
171 176 240 496 240 0 0.00000003 75.0 80 0.0
w 176 240 128 240 0
w 128 320 176 320 0
w 496 240 544 240 0
w 496 320 544 320 0
r 544 240 544 320 0 75.0
v 128 320 128 240 0 1 40000000.0 5.0 0.0 0.0 0.5


circuit.zip > opint-slew.txt

$ 1 2.0E-7 1.0751013186076355 58 15.0 66
t 64 160 96 160 0 1 -14.524416831323471 -2.506758109063678 100.0
t 128 224 96 224 0 -1 19.913739554792024 2.5067581090636915 100.0
t 96 288 144 288 0 1 -29.900223336664652 0.09977639416092643 100.0
t 144 352 96 352 0 1 -0.09977639416092643 2.691253317976816E-7 100.0
r 96 368 96 448 0 1000.0
r 144 352 144 448 0 50000.0
w 144 304 144 352 0
w 96 288 96 336 0
w 96 288 96 240 0
w 96 176 96 208 0
t 240 160 208 160 0 1 -8.558744145161098 0.4760782340175016 100.0
t 176 224 208 224 0 -1 18.933020836280406 -0.4760782340175016 100.0
w 208 176 208 208 0
w 128 224 176 224 0
w 176 224 176 256 0
w 208 240 208 288 0
t 144 352 208 352 0 1 -1.0804951126725442 2.69124420526623E-7 100.0
w 208 288 208 336 0
r 208 368 208 448 0 1000.0
w 96 448 144 448 0
w 144 448 208 448 0
R 96 448 48 448 0 0 40.0 -15.0 0.0 0.0 0.5
t 208 96 160 96 0 -1 0.0 -0.47558316867652906 100.0
t 208 96 304 96 0 -1 9.510900613196101 -0.47558316867652906 100.0
w 208 144 160 144 0
w 96 144 160 144 0
w 160 112 160 144 0
w 208 96 208 144 0
w 304 112 304 256 0
w 304 256 176 256 0
w 160 80 160 64 0
w 160 64 304 64 0
w 304 64 304 80 0
w 144 272 144 64 0
w 144 64 160 64 0
R 144 64 48 64 0 0 40.0 15.0 0.0 0.0 0.5
t 336 352 304 352 0 1 -19.445400273532385 0.475836876811206 100.0
t 336 352 368 352 0 1 0.0 0.5681159445949842 100.0
w 304 256 304 336 0
r 304 368 304 448 0 5000.0
w 208 448 304 448 0
w 304 448 368 448 0
w 368 448 368 368 0
w 336 352 336 304 0
w 336 304 368 304 0
w 368 304 368 336 0
r 368 304 368 144 0 39000.0
t 432 96 368 96 0 -1 0.0 -0.5678758104275303 100.0
t 432 96 512 96 0 -1 5.935809575255384 -0.5678758104275303 100.0
w 368 112 368 144 0
w 432 96 432 144 0
w 432 144 368 144 0
w 304 64 368 64 0
w 368 64 368 80 0
w 368 64 512 64 0
w 512 64 512 80 0
w 512 112 512 144 0
w 512 144 544 144 0
t 544 144 592 144 0 1 -6.503685385682914 0.5747794839304037 100.0
t 592 192 544 192 0 1 -0.5747794839304037 0.024148064987379314 100.0
w 544 144 544 176 0
w 592 160 592 192 0
w 592 128 592 64 0
w 592 64 512 64 0
w 544 208 544 256 0
r 592 192 592 256 0 25.0
w 544 256 592 256 0
r 592 256 592 336 0 50.0
w 512 144 512 192 0
w 592 368 592 448 0
t 480 256 512 256 0 1 -0.3684886259495066 0.5652176348585964 100.0
r 480 256 480 192 0 4500.0
r 480 256 480 320 0 7500.0
w 480 320 512 320 0
w 512 320 512 272 0
w 512 240 512 192 0
w 512 192 480 192 0
t 512 352 592 352 0 -1 22.562608353508985 -0.33477544138584836 100.0
w 512 320 512 352 0
t 480 368 512 368 0 1 -21.958971011928803 0.5675170607198208 100.0
t 512 400 432 400 0 1 -1.0443751009866045 0.03612028086036112 100.0
r 512 400 512 448 0 50.0
w 480 368 480 416 0
r 480 416 480 448 0 50000.0
w 480 448 512 448 0
w 512 448 592 448 0
w 480 448 432 448 0
w 432 448 432 416 0
w 368 448 432 448 0
w 512 384 512 400 0
t 432 336 480 336 0 1 -21.48211297166202 0.4768580402667837 100.0
w 432 336 432 384 0
w 480 352 480 368 0
w 208 288 432 288 0
w 432 288 432 336 0
w 480 192 432 192 0
c 432 192 432 288 0 3.0E-11 22.41581923247012
O 624 256 656 256 0
g 64 160 64 208 0
w 240 160 240 32 0
r 240 32 624 32 0 2000.0
w 624 32 624 256 0
w 624 256 592 256 0
r 240 32 144 32 0 1000.0
R 144 32 96 32 0 2 12000.0 5.0 0.0 0.0 0.5
x 29 167 48 173 0 24 +
x 241 195 255 201 0 24 -
o 104 4 0 34 5.0 0.003125 0 -1 in
o 97 2 0 290 20.0 9.765625E-5 1 -1 out


circuit.zip > volume.txt

$ 1 5.0E-6 10 67 5.0 64
j 304 240 352 240 0
r 304 240 304 176 0 100000.0
r 304 240 240 240 0 100000.0
w 304 176 352 176 0
w 352 176 352 224 0
g 352 256 352 304 0
w 352 176 352 128 0
r 352 128 240 128 0 6000.0
O 352 128 416 128 0
R 240 128 192 128 0 1 200.0 5.0 0.0
R 240 240 192 240 0 3 10.0 3.0 -8.0
o 10 64 0 6 20.0 9.765625E-5 0
o 8 64 0 6 5.0 9.765625E-5 0


circuit.zip > mosmirror.txt

$ 1 5.0E-6 11.251013186076355 50 5.0 50
f 320 288 240 288 0 1.5
f 320 288 400 288 0 1.5
w 320 288 320 240 0
w 320 240 240 240 0
w 240 240 240 272 0
w 240 304 240 352 1
w 240 352 320 352 0
w 400 304 400 352 1
w 400 352 320 352 0
g 320 352 320 384 0
R 240 112 240 80 0 0 40.0 5.0 0.0 0.0 0.5
R 400 112 400 80 0 0 40.0 5.0 0.0 0.0 0.5
w 400 272 400 240 0
r 400 112 400 240 0 100.0
w 400 112 448 112 0
w 400 240 448 240 0
s 448 112 448 240 0 1 false
w 240 240 192 240 0
w 240 112 192 112 0
r 240 112 240 240 0 500.0
r 192 112 192 176 0 100.0
s 192 176 192 240 0 1 false


circuit.zip > lrc.txt

$ 1 5.0E-6 10 50 5.0 43
r 176 80 384 80 0 10
s 384 80 448 80 0 true false
w 176 80 176 352 0
c 384 352 176 352 0 1.4999999999999999E-5 -9.860041921625609
l 384 80 384 352 0 1.0 0.03019234785322575
v 448 352 448 80 0 0 40.0 5.0 0.0
r 384 352 448 352 0 100.0
o 4 64 0 3 20.0 0.05
o 3 64 0 3 10.0 0.05
o 0 64 0 3 0.625 0.05
h 1 4 3


circuit.zip > ttlnand.txt

$ 1 5.0E-6 10 54 5.0
R 192 112 112 112 0 0 40.0 5.0 0.0
r 352 112 352 192 0 1000.0
w 352 192 352 224 0
t 192 192 192 240 0 1 0.5735476679612052 -4.40887239412782
t 240 192 240 288 0 1 0.5735476679612052 0.5911276058721799
t 288 240 352 240 0 1 -4.982420061888025 0.01757993791097478
w 208 240 288 240 0
w 256 288 288 288 0
w 288 288 288 240 0
w 192 192 240 192 0
L 176 240 128 240 0 false false
L 224 288 128 288 0 true false
g 352 256 352 336 0
w 192 112 352 112 0
r 192 112 192 192 0 4700.0
M 352 192 416 192 0


circuit.zip > tlfreq.txt

$ 1 5.0E-12 13.200821376227164 50 5.0 50
w 496 112 544 112 0
w 496 176 544 176 0
170 128 112 96 112 2 1.0E8 5.0E8 5.0 4.0E-7
g 176 176 176 192 0
r 128 112 176 112 0 75.0
g 544 176 544 192 0
p 544 112 544 176 0
170 128 272 96 272 2 1.0E8 5.0E8 5.0 4.0E-7
r 128 272 176 272 0 75.0
w 496 272 544 272 0
w 496 336 544 336 0
w 544 272 544 336 0
171 176 272 496 272 0 5.0E-9 75.0 64 0.0
171 176 112 496 112 0 5.0E-9 75.0 64 0.0
g 176 336 176 352 0
g 544 336 544 352 0
o 4 64 0 34 5.1 0.05 0 -1
o 8 64 0 34 5.1 0.05 1 -1


circuit.zip > mux3state.txt

$ 0 5.0E-6 1.5 50 5.0
151 112 160 208 160 0 2 5.0
150 112 288 208 288 0 2 5.0
f 208 288 272 288 4
f 208 160 272 160 5
w 272 176 272 224 0
w 272 224 272 272 0
g 272 304 272 336 0
R 272 144 272 112 0 0 40.0 5.0 0.0
L 112 176 48 176 0 true false 5.0 0.0
w 112 144 80 144 0
w 80 144 80 304 0
w 80 304 112 304 0
w 272 224 320 224 0
w 320 224 368 224 0
w 368 224 368 272 0
w 368 224 368 176 0
f 432 288 368 288 4
f 432 160 368 160 5
R 368 144 368 112 0 0 40.0 5.0 0.0
g 368 304 368 336 0
150 528 288 432 288 0 2 0.0
151 528 160 432 160 0 2 5.0
w 576 144 528 144 0
w 80 144 80 48 0
w 576 48 576 144 0
w 576 144 576 304 0
w 576 304 528 304 0
M 320 224 320 384 0 2.5
I 528 176 528 272 0
L 528 176 608 176 0 true false 5.0 0.0
x 32 155 48 155 0 16 in 1
x 506 358 522 358 0 16 select
x 593 157 609 157 0 16 in 2
x 145 95 161 95 0 16 tri-state buffer
x 382 94 398 94 0 16 tri-state buffer
L 576 304 576 352 0 true false 5.0 0.0
I 576 48 80 48 0
I 112 176 112 272 0


circuit.zip > jfetfollower.txt

$ 1 5.0E-6 10 60 5.0 58
w 288 80 288 160 0
r 288 192 288 288 0 10000.0
O 288 192 336 192 0
j 240 176 288 176 0
R 240 176 192 176 0 1 40.0 2.0 0.0
g 288 288 288 320 0
R 288 80 240 80 0 0 40.0 10.0 0.0
o 4 64 0 2 2.5 9.765625E-5
o 2 64 0 2 10.0 9.765625E-5


circuit.zip > multivib-bi.txt

$ 1 5.0E-6 10.391409633455755 50 5.0 50
r 144 32 144 128 0 100.0
r 384 32 384 128 0 100.0
w 384 128 384 192 0
t 304 208 384 208 0 1 0.617227886429507 0.6759235619928714 100.0
w 224 128 304 208 0
w 304 128 224 208 0
t 224 208 144 208 0 1 -4.584864481423058 0.029057265154527386 100.0
w 144 128 144 192 0
r 304 128 384 128 0 1020.0
r 144 128 224 128 0 1020.0
M 384 128 448 128 0 2.5
w 144 32 384 32 0
M 144 128 80 128 0 2.5
R 144 32 80 32 0 0 40.0 5.0 0.0 0.0 0.5
r 224 208 224 304 0 1000.0
r 304 208 304 304 0 1000.0
L 224 304 80 304 0 0 true 5.0 0.0
L 304 304 448 304 0 0 true 5.0 0.0
x 54 105 106 109 2 16 output
x 422 100 474 104 0 16 output
x 70 278 93 282 0 16 set
x 429 277 468 281 0 16 reset
g 144 224 144 256 0
g 384 224 384 256 0
x 106 212 128 216 0 16 Q1
x 400 213 422 217 0 16 Q2


circuit.zip > transformerdc.txt

$ 1 5.0E-6 10 50 5.0 42
v 176 272 176 144 0 0 60.0 10.0 0.0
w 352 224 352 272 0
T 272 192 352 192 0 10.0 1.0 0 0
w 272 192 272 144 0
w 272 224 272 272 0
r 272 144 176 144 0 100.0
w 176 272 272 272 0
w 352 272 448 272 0
w 352 144 448 144 0
r 448 144 448 272 0 300.0
w 352 192 352 144 0
o 0 64 0 3 10.0 0.1 0
o 9 64 0 3 10.0 0.025 1


circuit.zip > currentsrc.txt

$ 1 5.0E-6 10.391409633455755 58 10.0 50
t 192 224 256 224 0 1 0.25888403915739877 0.5839501020424223 100.0
r 256 240 256 288 0 1000.0
g 256 288 256 320 0
w 256 208 256 160 1
w 256 160 304 160 0
w 256 64 304 64 0
R 256 64 256 16 0 0 40.0 10.0 0.0 0.0 0.5
s 304 64 304 160 0 1 false
r 256 64 256 160 0 6000.0
w 256 64 192 64 0
w 192 288 256 288 0
r 192 224 192 288 0 2000.0
r 192 224 192 64 0 8000.0


circuit.zip > inductac.txt

$ 1 5.0E-6 14.3 55 5.0
v 176 256 176 80 0 1 40.0 5.0 0.0
r 176 80 336 80 0 180.0
w 176 256 336 256 0
l 336 80 336 256 0 1.0 -0.01522759374043248
o 3 64 0 3 10.0 0.025


circuit.zip > mosfollower.txt

$ 1 5.0E-6 11.251013186076355 54 5.0 50
R 208 144 176 144 0 1 40.0 5.0 0.0 0.0 0.5
O 256 160 320 160 0
f 208 144 256 144 0 1.5
r 256 48 256 128 0 500.0
R 256 48 208 48 0 0 40.0 15.0 0.0 0.0 0.5
R 256 256 256 288 0 0 40.0 -15.0 0.0 0.0 0.5
i 256 160 256 256 0 0.0050
o 1 64 0 34 12.0 1.220703125E-5 0 -1


circuit.zip > digsine.txt

$ 3 5.0E-6 10 69 5.0
155 80 224 88 224 1 5.0
155 144 224 152 224 1 5.0
155 208 224 216 224 1 0.0
155 272 224 280 224 1 0.0
155 336 224 344 224 1 0.0
155 400 224 416 224 1 0.0
155 464 224 480 224 1 0.0
155 528 224 544 224 1 0.0
w 128 224 144 224 0
w 192 224 208 224 0
w 256 224 272 224 0
w 320 224 336 224 0
w 384 224 400 224 0
w 448 224 464 224 0
w 512 224 528 224 0
w 576 256 576 280 0
w 576 280 64 280 0
w 64 280 64 224 0
w 64 224 80 224 0
w 80 240 72 240 0
w 72 240 72 304 0
w 144 240 136 240 0
w 136 240 136 304 0
w 208 240 200 240 0
w 200 240 200 304 0
w 272 240 264 240 0
w 264 240 264 304 0
w 336 240 328 240 0
w 328 240 328 304 0
w 400 240 392 240 0
w 392 240 392 304 0
w 464 240 456 240 0
w 456 240 456 304 0
w 528 240 520 240 0
w 520 240 520 304 0
w 520 304 456 304 0
w 456 304 392 304 0
w 392 304 328 304 0
w 328 304 264 304 0
w 264 304 200 304 0
w 200 304 136 304 0
w 136 304 72 304 0
R 72 304 32 304 1 2 800.0 2.5 2.5
r 128 224 128 96 0 57600.0
r 192 224 192 96 0 30900.0
r 256 224 256 96 0 23700.0
r 320 224 320 96 0 22100.0
r 384 224 384 96 0 23700.0
r 448 224 448 96 0 30900.0
r 512 224 512 96 0 57600.0
w 128 96 192 96 0
w 192 96 256 96 0
w 256 96 320 96 0
w 320 96 384 96 0
w 384 96 448 96 0
w 448 96 512 96 0
w 512 96 552 96 0
c 552 96 552 176 0 3.0E-7 0.33745879726352607
O 552 96 600 96 0
g 552 176 552 184 0
o 58 64 0 2 5.0 9.765625E-5 0


circuit.zip > amdetect.txt

$ 4 5.0E-6 25.23 50 5.0 50
r 144 272 208 272 0 3000.0
l 208 144 208 272 0 0.0010 0.18734471432590385
w 208 144 272 144 0
c 272 144 272 272 0 2.8144799999999998E-6 -2.5493952165122247
w 208 272 272 272 0
c 400 144 400 272 0 3.0E-7 3.6693609627456207
w 400 144 464 144 0
r 464 144 464 272 0 47000.0
w 400 272 464 272 0
w 144 144 208 144 0
A 144 144 144 112 0
g 144 272 144 320 0
p 144 144 144 272 0
d 336 144 400 144 0
w 272 144 336 144 0
w 272 272 336 272 0
w 336 272 400 272 0
p 336 144 336 272 0
x 260 127 276 127 0 20 C1
x 387 127 403 127 0 20 C2
o 12 8 0 6 40.0 9.765625E-5 0 antenna
o 17 4 0 14 10.0 9.765625E-5 1 carrier
o 7 256 0 14 10.0 9.765625E-5 2 out
h 1 1 3


circuit.zip > 3-f221.txt

$ 1 5.0E-6 10.812258501325767 50 5.0 50
f 288 288 352 288 6 0.75
w 352 272 352 240 0
w 352 240 352 208 0
f 288 192 352 192 7 0.75
w 288 192 288 240 0
w 288 240 288 288 0
R 352 176 352 128 0 0 40.0 5.0 0.0 0.0 0.5
M 352 240 400 240 1 2.5
L 288 240 240 240 1 0 false 5.0 0.0
R 352 304 352 352 0 0 40.0 2.5 0.0 0.0 0.5


circuit.zip > phaseshiftosc.txt

$ 1 5.0E-6 13.097415321081861 58 5.0 50
c 128 224 192 224 0 5.0E-7 11.800776695055955
c 192 224 256 224 0 5.0E-7 2.013884192737342
c 256 224 320 224 0 5.0E-7 -0.3404389620445001
r 320 224 384 224 0 1000.0
r 192 224 192 304 0 1000.0
r 256 224 256 304 0 1000.0
g 192 304 192 320 0
g 256 304 256 320 0
a 384 240 480 240 0 15.0 -15.0 1000000.0
w 384 224 384 176 0
r 384 176 480 176 0 29000.0
w 480 176 480 240 0
w 480 240 496 240 0
w 496 240 496 144 0
w 496 144 128 144 0
w 128 144 128 224 0
O 496 240 544 240 0
g 384 256 384 304 0
o 3 64 0 34 0.625 0.0015625 0 -1
o 16 64 0 42 20.0 9.765625E-5 0 -1


circuit.zip > relayxor.txt

$ 1 5.0E-6 10.20027730826997 47 5.0 50
178 176 192 272 192 0 1 0.1 4.3921117436851676E-10 0.05 1000000.0 0.02 50.0
178 400 192 304 192 0 1 0.1 1.9184076606594825E-6 0.05 1000000.0 0.02 50.0
w 272 176 304 208 0
w 272 208 304 176 0
R 176 192 144 192 0 0 40.0 5.0 0.0 0.0 0.5
g 176 240 176 256 0
g 400 240 400 256 0
w 176 224 144 224 0
w 400 224 432 224 0
L 144 224 144 304 0 0 false 5.0 0.0
L 432 224 432 304 0 0 false 5.0 0.0
w 400 192 480 192 0
r 480 192 480 272 0 100.0
g 480 272 480 288 0
M 480 192 528 192 0 2.5


circuit.zip > 3-f220.txt

$ 1 5.0E-6 10.812258501325767 50 5.0 50
f 288 288 352 288 6 3.25
w 352 272 352 240 0
w 352 240 352 208 0
f 288 192 352 192 7 0.75
w 288 192 288 240 0
w 288 240 288 288 0
R 352 176 352 128 0 0 40.0 5.0 0.0 0.0 0.5
M 352 240 400 240 1 2.5
L 288 240 240 240 1 0 false 5.0 0.0
g 352 304 352 336 0


circuit.zip > jfetamp.txt

$ 1 5.0E-6 32 60 5.0 53
r 272 224 272 320 0 1675.0
j 224 208 272 208 0
R 224 208 176 208 0 1 40.0 0.1 0.0
R 272 80 224 80 0 0 40.0 10.0 0.0
r 272 80 272 192 0 1675.0
c 272 192 384 192 0 1.0E-6 7.557166811906079
r 384 192 384 320 0 50000.0
g 384 320 384 352 0
O 384 192 448 192 0
w 272 224 320 224 0
c 320 224 320 320 0 9.999999999999999E-5 2.459186829842572
w 272 320 320 320 0
g 272 320 272 352 0
o 2 128 0 2 0.15625 9.765625E-5 0
o 8 128 0 2 0.625 1.220703125E-5 1


circuit.zip > mr-sine2.txt

$ 1 5.0E-8 9.78399845368213 72 1.0 50
g 320 304 320 320 0
m 320 192 320 304 0 100.0 12500.0 0.0 1.0E-8 1.0E-10
R 320 192 320 160 0 1 5000.0 1.0 0.0 0.0 0.5
o 1 64 0 35 1.25 0.003125 0 -1
o 1 64 2 35 20480.0 9.765625E-5 1 -1
o 1 64 0 99 1.25 0.003125 2 -1


circuit.zip > relayctr.txt

$ 1 1.0E-4 0.37936678946831776 42 5.0 50
178 112 352 176 352 0 3 0.02 -0.246374098463728 0.05 1000000.0 0.02 20.0
178 112 128 176 128 0 2 0.02 0.008998074798403165 0.05 1000000.0 0.02 20.0
R 176 64 208 64 0 0 40.0 6.0 0.0 0.0 0.5
w 176 112 192 112 0
w 192 112 192 368 0
w 192 368 176 368 0
w 176 96 208 96 0
g 208 96 208 112 0
w 176 144 176 192 0
w 176 192 112 192 0
w 112 192 112 176 0
w 112 160 96 160 0
w 96 256 112 256 0
w 176 368 176 416 0
w 176 416 112 416 0
w 112 416 112 400 0
w 112 384 80 384 0
g 80 432 80 448 0
w 112 304 80 304 0
w 80 304 80 48 0
w 80 48 240 48 0
w 240 48 240 80 0
w 112 192 64 192 0
w 64 192 64 352 0
w 64 352 112 352 0
w 240 128 240 320 0
w 176 320 240 320 0
w 176 272 224 272 0
162 224 384 224 432 1 2.1024259 1.0 0.0 0.0
g 224 432 224 448 0
R 112 256 112 288 0 0 40.0 6.0 0.0 0.0 0.5
w 224 272 224 304 0
r 224 304 224 384 0 100.0
r 432 304 432 384 0 100.0
w 432 272 432 304 0
R 320 256 320 288 0 0 40.0 6.0 0.0 0.0 0.5
g 432 432 432 448 0
162 432 384 432 432 1 2.1024259 1.0 0.0 0.0
w 384 272 432 272 0
w 384 320 448 320 0
w 448 128 448 320 0
w 496 128 448 128 0
w 272 352 320 352 0
w 272 192 272 352 0
w 320 192 272 192 0
w 496 48 496 80 0
w 288 48 496 48 0
w 288 304 288 48 0
w 320 304 288 304 0
g 288 432 288 448 0
w 320 384 288 384 0
w 320 416 320 400 0
w 384 416 320 416 0
w 384 368 384 416 0
w 304 256 320 256 0
w 320 160 304 160 0
w 320 192 320 176 0
w 384 192 320 192 0
w 384 144 384 192 0
g 416 96 416 112 0
w 384 96 416 96 0
w 400 368 384 368 0
w 400 112 400 368 0
w 384 112 400 112 0
R 384 64 416 64 0 0 40.0 6.0 0.0 0.0 0.5
178 320 128 384 128 0 2 0.02 0.0012317989769374195 0.05 1000000.0 0.02 20.0
178 320 352 384 352 0 3 0.02 -0.24971375659971373 0.05 1000000.0 0.02 20.0
w 240 80 320 80 0
w 240 128 320 128 0
r 656 304 656 384 0 100.0
w 656 272 656 304 0
R 544 256 544 288 0 0 40.0 6.0 0.0 0.0 0.5
g 656 432 656 448 0
162 656 384 656 432 1 2.1024259 1.0 0.0 0.0
w 608 272 656 272 0
w 496 352 544 352 0
w 496 192 496 352 0
w 544 192 496 192 0
w 544 304 512 304 0
g 512 432 512 448 0
w 544 384 512 384 0
w 544 416 544 400 0
w 608 416 544 416 0
w 608 368 608 416 0
w 528 256 544 256 0
w 544 160 528 160 0
w 544 192 544 176 0
w 608 192 544 192 0
w 608 144 608 192 0
g 640 96 640 112 0
w 608 96 640 96 0
w 624 368 608 368 0
w 624 112 624 368 0
w 608 112 624 112 0
R 608 64 640 64 0 0 40.0 6.0 0.0 0.0 0.5
178 544 128 608 128 0 2 0.02 0.001168923898353853 0.05 1000000.0 0.02 20.0
178 544 352 608 352 0 3 0.02 -0.24487149798797075 0.05 1000000.0 0.02 20.0
w 496 80 544 80 0
w 496 128 544 128 0
w 112 80 112 64 0
w 112 64 48 64 0
w 112 128 48 128 0
159 48 64 48 128 0 1.0 1.0E10
R 32 96 32 16 1 2 25.0 2.5 2.5 0.0 0.5
w 96 160 96 256 0
w 304 160 304 256 0
w 528 160 528 256 0
w 80 384 80 432 0
w 288 384 288 432 0
w 512 384 512 432 0
o 73 8 0 37 2.3384026197294445 0.046768052394588894 0 -1
o 37 8 0 37 2.187250724783012 0.04374501449566024 0 -1
o 28 8 0 37 2.3384026197294445 0.046768052394588894 0 -1


circuit.zip > amp-sum.txt

$ 1 5.0E-6 16 57 5.0 50
a 288 208 432 208 0 15.0 -15.0
w 288 128 288 192 0
w 432 208 432 128 0
r 288 128 432 128 0 1000.0
w 288 224 288 272 0
g 288 272 288 304 0
w 288 192 240 192 0
w 240 192 240 160 0
w 240 192 240 224 0
r 240 160 176 160 0 1000.0
r 176 224 240 224 0 1000.0
R 176 160 128 160 0 1 200.0 5.0 0.0
R 176 224 128 224 0 2 20.0 2.0 0.0
O 432 208 496 208 0
o 11 64 0 2 5.0 0.025 0
o 12 64 0 2 5.0 0.0125 0
o 13 64 0 2 10.0 9.765625E-5 1


circuit.zip > 3-cgor.txt

$ 1 5.0E-6 10.812258501325767 50 5.0 50
f 368 368 480 368 6 3.25
w 480 384 480 400 0
w 368 320 368 336 0
w 288 320 288 336 0
w 288 336 368 336 0
w 480 336 480 352 0
w 288 272 288 288 0
w 288 272 368 272 0
w 368 272 368 288 0
w 368 256 368 272 0
w 368 208 368 224 0
R 368 176 368 144 0 0 40.0 2.5 0.0 0.0 0.5
w 320 192 240 192 0
w 240 192 240 304 0
w 320 240 320 304 0
w 320 240 208 240 0
w 208 240 208 368 0
w 208 368 368 368 0
w 176 192 240 192 0
w 176 192 176 416 0
w 176 416 368 416 0
f 416 64 480 64 7 3.25
w 480 16 480 48 0
w 432 16 480 16 0
w 480 240 480 336 0
M 480 240 544 240 1 2.5
w 416 64 176 64 0
w 176 64 176 192 0
w 208 240 208 112 0
L 176 192 80 192 1 2 false 5.0 0.0
L 208 240 80 240 1 1 false 5.0 0.0
R 432 16 384 16 0 0 40.0 5.0 0.0 0.0 0.5
w 480 144 480 240 0
f 416 112 480 112 7 3.25
w 480 80 480 96 0
w 480 128 480 144 0
w 208 112 416 112 0
f 368 416 432 416 6 3.25
g 480 400 480 416 0
g 432 432 432 448 0
w 368 336 432 336 0
w 432 336 432 400 0
w 432 336 480 336 0
f 240 304 288 304 6 -1.75
f 320 304 368 304 6 -1.75
f 320 192 368 192 7 -1.75
f 320 240 368 240 7 -1.75


circuit.zip > spikegen.txt

$ 1 5.0E-6 10 50 5.0
v 112 288 112 144 0 2 40.0 5.0 0.0
r 240 144 240 288 0 110.0
d 240 144 368 144 0
w 112 288 240 288 0
c 112 144 240 144 0 1.0E-5 4.9868403762557465
O 368 144 432 144 0
r 368 144 368 288 0 100.0
w 240 288 368 288 0
o 5 64 0 3 10.0 9.765625E-5


circuit.zip > nic-r.txt

$ 1 5.0E-6 10 50 5.0
a 128 144 256 144 1
w 128 128 128 80 0
r 128 80 256 80 0 100.0
w 256 80 256 144 0
w 128 160 128 208 0
r 128 208 256 208 0 100.0
w 256 144 256 208 0
g 128 288 128 320 0
R 128 128 48 128 0 1 100.0 5.0 0.0
R 416 128 336 128 0 1 100.0 5.0 0.0
g 416 288 416 320 0
r 128 208 128 288 0 150.0
r 416 208 416 288 0 150.0
w 416 128 416 208 0
o 8 64 0 35 5.0 0.1 0 -1 nic
o 8 64 0 99 5.0 0.1 1 -1 nic I/V
o 9 64 0 35 5.0 0.1 2 -1 normal
o 9 64 0 99 5.0 0.1 3 -1 normal I/V


circuit.zip > opint-current.txt

$ 1 1.0E-5 1.5642631884188172 54 15.0 66
t 64 160 96 160 0 1 -14.524416831323471 0.45874279140993174 100.0
t 128 224 96 224 0 -1 13.155478365585369 -0.45874279140993174 100.0
t 96 288 144 288 0 1 -29.07296394840523 0.45933099081733353 100.0
t 144 352 96 352 0 1 -0.45933099081733353 0.45848552057607606 100.0
r 96 368 96 448 0 1000.0
r 144 352 144 448 0 50000.0
w 144 304 144 352 0
w 96 288 96 336 0
w 96 288 96 240 0
w 96 176 96 208 0
t 240 160 208 160 0 1 -14.524389782067212 0.458756316038061 100.0
t 176 224 208 224 0 -1 13.001245413909114 -0.4587563160380609 100.0
w 208 176 208 208 0
w 128 224 176 224 0
w 176 224 176 256 0
w 208 240 208 288 0
t 144 352 208 352 0 1 -0.6135639424935881 0.4584855205760743 100.0
w 208 288 208 336 0
r 208 368 208 448 0 1000.0
w 96 448 144 448 0
w 144 448 208 448 0
R 96 448 48 448 0 0 40.0 -15.0 0.0 0.0 0.5
t 208 96 160 96 0 -1 0.0 -0.47558316867652906 100.0
t 208 96 304 96 0 -1 15.441902414143334 -0.47558316867652906 100.0
w 208 144 160 144 0
w 96 144 160 144 0
w 160 112 160 144 0
w 208 96 208 144 0
w 304 112 304 256 0
w 304 256 176 256 0
w 160 80 160 64 0
w 160 64 304 64 0
w 304 64 304 80 0
w 144 272 144 64 0
w 144 64 160 64 0
R 144 64 48 64 0 0 40.0 15.0 0.0 0.0 0.5
t 336 352 304 352 0 1 -13.514398472585153 0.4758368768112078 100.0
t 336 352 368 352 0 1 0.0 0.5681159445949842 100.0
w 304 256 304 336 0
r 304 368 304 448 0 5000.0
w 208 448 304 448 0
w 304 448 368 448 0
w 368 448 368 368 0
w 336 352 336 304 0
w 336 304 368 304 0
w 368 304 368 336 0
r 368 304 368 144 0 39000.0
t 432 96 368 96 0 -1 0.0 -0.5678758104275285 100.0
t 432 96 512 96 0 -1 14.673938034545353 -0.5678758104275285 100.0
w 368 112 368 144 0
w 432 96 432 144 0
w 432 144 368 144 0
w 304 64 368 64 0
w 368 64 368 80 0
w 368 64 512 64 0
w 512 64 512 80 0
w 512 112 512 144 0
w 512 144 544 144 0
t 544 144 592 144 0 1 -15.241813844972881 0.2605204218142353 100.0
t 592 192 544 192 0 1 -0.2605204218142353 8.387701844192463E-8 100.0
w 544 144 544 176 0
w 592 160 592 192 0
w 592 128 592 64 0
w 592 64 512 64 0
w 544 208 544 256 0
r 592 192 592 256 0 25.0
w 544 256 592 256 0
r 592 256 592 336 0 50.0
w 512 144 512 192 0
w 592 368 592 448 0
t 480 256 512 256 0 1 -0.3678986750643859 0.5648836713483172 100.0
r 480 256 480 192 0 4500.0
r 480 256 480 320 0 7500.0
w 480 320 512 320 0
w 512 320 512 272 0
w 512 240 512 192 0
w 512 192 480 192 0
t 512 352 592 352 0 -1 13.825403808614416 -0.5885347729781805 100.0
w 512 320 512 352 0
t 480 368 512 368 0 1 -13.221109797257107 0.5677848077046654 100.0
t 512 400 432 400 0 1 -1.0447597996183795 0.03650920365264376 100.0
r 512 400 512 448 0 50.0
w 480 368 480 416 0
r 480 416 480 448 0 50000.0
w 480 448 512 448 0
w 512 448 592 448 0
w 480 448 432 448 0
w 432 448 432 416 0
w 368 448 432 448 0
w 512 384 512 400 0
t 432 336 480 336 0 1 -12.744134805343393 0.47697499191371406 100.0
w 432 336 432 384 0
w 480 352 480 368 0
w 208 288 432 288 0
w 432 288 432 336 0
w 480 192 432 192 0
c 432 192 432 288 0 3.0E-11 13.676917151756095
O 624 256 656 256 0
g 64 160 64 208 0
w 240 160 240 32 0
r 240 32 624 32 0 300.0
w 624 32 624 256 1
w 624 256 592 256 0
r 240 32 144 32 0 150.0
R 144 32 96 32 0 1 40.0 5.0 0.0 0.0 0.5
x 29 167 48 173 0 24 +
x 241 195 255 201 0 24 -
o 97 16 0 34 20.0 9.765625E-5 0 -1


circuit.zip > induct.txt

$ 1 5.0E-6 16 50 5.0
v 96 336 96 64 0 0 40.0 5.0 0.0
S 256 144 256 64 0 false false 0
w 96 64 240 64 0
r 96 336 256 336 0 140.0
r 256 336 400 336 0 140.0
w 272 64 400 64 0
w 400 64 400 336 0
l 256 144 256 336 0 3.0 0
o 7 128 0 3 5.0 0.05


circuit.zip > indpar.txt

$ 1 5.0E-6 10 50 5.0
v 48 336 48 64 0 0 40.0 5.0 0.0
S 144 144 144 64 0 false false 1
w 240 64 240 336 0
r 48 336 144 336 0 100.0
r 144 336 240 336 0 100.0
w 48 64 128 64 0
w 160 64 240 64 0
r 288 336 384 336 0 100.0
r 384 336 480 336 0 100.0
w 480 64 480 336 0
S 384 144 384 64 0 false false 1
w 288 64 368 64 0
w 400 64 480 64 0
v 288 336 288 64 0 0 40.0 5.0 0.0
w 144 144 144 192 0
w 144 336 144 288 0
w 144 288 96 288 0
w 96 192 144 192 0
w 144 192 192 192 0
l 96 192 96 288 0 1.0 0
l 192 192 192 288 0 5.0 0
l 384 144 384 336 0 .8333 0
w 144 288 192 288 0


circuit.zip > e-filt-lopass.html

Low-Pass Filter (RC)




Sorry, you need a Java-enabled browser to see the simulation.







This is a low-pass
filter implemented using a resistor and a capacitor. A
low-pass filter passes
lower frequencies and attenuates higher
frequencies. The capacitor passes higher frequencies,
causing the voltage across
it to be reduced and keeping the output voltage closer to
ground. The capacitor blocks lower frequencies, causing
reduced current across the resistor and keeping the
output voltage closer to the input voltage.

Below the circuit is the frequency response in
dB for a range
of frequencies. You can click on the frequency response graph to see
the circuit in operation at that particular frequency.


Next: High-Pass Filter (RL)
Previous: High-Pass Filter response (RC)
Analog Filter Applet
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tdiode.html

Tunnel Diode I/V Curve





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows
a tunnel
diode , a device that demonstrates
negative
resistance . The graphs at the lower right shows current versus
voltage. When the applied voltage is increased, most devices have
increased current flow. But the tunnel diode has a region where
increased voltage will cause reduced current; this is the
downward-sloping part of the graph.


Next: Tunnel Diode Relaxation Oscillator
Previous: Memristor Hard-Switching 2
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-555saw.html

555 Sawtooth Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple
sawtooth
oscillator
using a
555 timer chip .

A timing interval starts when the trigger input ( " tr " ) goes lower than 1/3
V in , or 3.33V. When this happens,
the 555 output goes high, and the 555 waits for the threshold input ( " th " ) to
reach 2/3 V in , or 6.67V. A PNP transistor acts as a
current source to steadily charge
the capacitor. The threshold
input slowly rises until it reaches the
required level. Then, the timing
interval ends, and the capacitor is quickly discharged through
the " dis " input.

When the capacitor is discharged enough so that the trigger reaches 3.33V,
then a new timing interval begins. The end result is a sawtooth wave.


Next: 555 Low-duty-cycle Oscillator
Previous: 555 Internals
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-nandff.html

SR Flip-Flop





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a flip-flop
or latch, which stores one bit of memory. When you click the set input, it goes low, and
this brings the Q output high, even after the set input goes high again. When you click
the reset input, it goes low, and this
brings the Q output low. If set and reset are high, then the output stays the same as
when it was last set or reset.


Next: Clocked SR Flip-Flop
Previous: 7-Segment LED Decoder
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tlterm.html

Termination of a Transmission Line





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple circuit showing various ways to terminate
transmission
lines . The characteristic impedance of these lines is 75 ohms. The top line is properly
terminated, with a 75 ohm resistor at each end. As a result, the pulse travels across
and is absorbed at the right end. This is the most efficient way to terminate a line,
since it minimizes reflections that waste energy.

The second line is terminated with a resistor that is too large, causing the wave
to be reflected, and absorbed at the other end (which is properly terminated).
The third line is terminated with a resistor that is too small, causing the wave
to be reflected negatively.

The fourth line is terminated improperly at both ends, causing the wave to reflect
back and forth for a while.


Next: Mismatched transmission lines (Pulse)
Previous: Standing Wave on a Transmission Line
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-eclnor.html

ECL NOR/OR





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a NOR/OR gate using emitter-coupled
logic , a high-speed type of logic using
transistors .
The two inputs are shown at left. If either one of them is high (-700
mV), then the OR output is high, and the NOR output is low.
If they are both low (-1.4V), then the OR is low, and NOR is high.

Q3's base voltage is fixed at a level where there is enough base
current to get Q3 to conduct. This brings Q3's collector down to about
740 mV, which brings the OR output low (through a follower
attached to Q3's collector). Q3's emitter is high enough
relative to Q2's base that Q2 can't conduct, so Q2's collector stays
at ground. This keeps the NOR output high (through a follower).

If either of the two inputs is high, then the corresponding transistor
conducts. This brings Q1/Q2's collector low, which brings the NOR output
low. It also brings Q1/Q2's emitter high enough so that Q3 can't
conduct, which brings the OR output high.

The advantage of ECL is speed, because the transistors are never in
saturation. They are either in cutoff or forward-active mode; transistors
can switch between these two states quickly. The disadvantage is
that there is always a lot of current, and therefore power consumption.


Next: Exclusive OR
Previous: TTL NOR
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-gyrator.html

Gyrator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







The circuit on top uses a gyrator to simulate
an inductor. Inductors can be bulky, heavy, and expensive,
so it is often valuable to replace them with cheaper components. The circuit being simulated
is on the bottom.

The capacitor passes high frequencies (and sudden changes), causing the + input of the op-amp to be closer to the
input signal. (Because of the large (20k) resistor, there isn't much current through the
capacitor, though.) The op-amp keeps the & ndash; input at the same level as +, causing
less current to pass through the 1k resistor, because the voltage is nearly the same
as the input. The circuit blocks high frequencies, like an inductor.

The capacitor blocks low frequencies (and steady voltages), causing the + input of the op-amp to be closer to ground.
The op-amp keeps the & ndash; input at the same level as +, causing
more current to pass through the 1k resistor to ground; it passes low frequencies, like an
inductor.


Next: Capacitance Multiplier
Previous: Negative Impedance Converter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-graycode.html

Gray Code Counter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit counts in Gray code ,
a system of binary counting in which only one digit changes each time the count is updated.


Next: Johnson Counter / Decade Counter
Previous: Decimal Counter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-voltdouble.html

Voltage Doubler





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses some diodes and capacitors to generate 28 V from an
15 V input signal. The current from the input flows through the upper diode
in one direction, charging the upper capacitor; the diode prevents the capacitor
from being discharged when the input signal goes negative. The bottom diode/capacitor
pair works the same way for the negative portion of the input cycle.


Next: Voltage Tripler
Previous: Spike Generator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-capac.html

A/C Response of Capacitor





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows the response of a capacitor when driven by alternating current. Current (in yellow)
and voltage (in green) across the capacitor are shown in the scope below the circuit. Note
that current leads voltage; when current peaks, the capacitor is just starting to be charged,
and voltage is zero. When voltage across the capacitor peaks, the current stops and begins to
flow in the opposite direction.


Next: A/C Response of Inductor
Previous: Norton's Theorem
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > ex-multivib-m.html

This document has moved
here .


circuit.zip > ex-multivib-b.html

This document has moved
here .


circuit.zip > e-tl.html

Simple Transmission Lines





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a simple circuit using a
transmission
line . Normally, when analyzing a circuit, the length of a wire is
not important. But in this case, the frequency is high enough that the
time it takes electrical energy to cross the transmission line is longer
than a single cycle. A period of oscillation is 25 nanoseconds, and the
transmission line delay is 30 nanoseconds.


Next: Standing Wave on a Transmission Line
Previous: 555 Missing Pulse Detector
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-volttriple.html

Voltage Tripler





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit uses some diodes and capacitors to generate 42 V from an
15 V input signal.


Next: Voltage Quadrupler
Previous: Voltage Doubler
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > ex-gyrator.html

This document has moved
here .


circuit.zip > ex-555int.html

This document has moved
here .


circuit.zip > e-digcompare.html

2-Bit Comparator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit compares two 2-digit binary numbers.


Next: 7-Segment LED Decoder
Previous: Majority Logic
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-cmosnor.html

CMOS NOR





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows a CMOS
NOR gate . The
output is low whenever one or both of the inputs is high,
and high otherwise. Click on the inputs
(on the left) to toggle their state.

The MOSFET s act as switches. When
one of the inputs is high, the corresponding n-MOSFETs switches on to
connect the output to ground. If both
inputs are low, the p-MOSFETs switch on to connect the output to +5V.


Next: CMOS XOR
Previous: CMOS NAND
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-crossover.html

Crossover





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a series of three filters which direct three
frequency ranges to appropriate speakers. The filter on top is a
low-pass filter, the middle one selects mid-range, and the filter on
the bottom is a high-pass.



Next: 3-Way Light Switches
Previous: Twin-T Filter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mosmirror.html

Current Mirror





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a current mirror ,
a device that uses the current in one half of the circuit to control the current
flow in the other half. The current is the same in both halves. The switch on
the left changes the current flow in the left half, which is mirrored in the
right half. The switch on the right causes the resistor to be bypassed, but the
current mirror ensures that the flow of current does not change.

If the left MOSFET is in saturation mode, its current is determined only by the
gate-source voltage. The left MOSFET has its gate and drain tied together, so
the drain voltage determins the current. The right MOSFET has the same gate-source
voltage, so the current must be the same, as long as it is in saturation mode.


Next: Common-Source Amplifier
Previous: Current Ramp
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-mosfetamp.html

Common-Source Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a common-source
amplifier, which amplifies the input voltage about 30 times.

The gain of this amplifier is determined partly the
transconductance
of the
MOSFET . This depends on
the bias point in the circuit;
here it averages about 9 mA/V. This means that a change in the gate voltage
causes a change in the drain current that is 9 mA/V times the gate voltage
change.

The drain current goes through a 4k ohm resistor. The capacitor connected
to the source is supposed to act as a short circuit at the input frequency,
so it and the source resistor can be ignored.
A change in input of 50 mV causes a change in drain voltage of 9 mA/V * 50 mV *
4000 ohms, or about 1.8 V. This means the predicted output gain is
36. Here it is less
because the transconductance changes over the input cycle (the amplifier
isn't quite linear), we are ignoring the output resistor, and the source
capacitor isn't quite a short circuit like we supposed.


Next: CMOS Inverter
Previous: Current Mirror
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-transswitch.html

Switch





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







A simple switch circuit using a
transistor . When the switch is
closed, current flows through the base to the emitter (this junction acts like a diode). This switches
the transistor on, so that current
can flow from the collector to the emitter. A small base current can control a much larger current from
the collector to the emitter.

The transistor wants the collector-emitter current to be 100 times the base current, but
it can't, because such a large current through the 300 ohm resistor would bring the collector below ground.
So, the transistor is in saturation mode; it brings the collector voltage as low as possible.


Next: Emitter Follower
Previous: PNP Transistor (Bipolar)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-tdrelax.html

Tunnel Diode Relaxation Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This example shows
a tunnel
diode used to make an oscillator. The two resistors bias the
diode in its negative resistance region .
As the current begins to
flow through the inductor, the voltage across the tunnel diode
increases until it hits the negative resistance region of its curve.
The inductor still has a positive voltage across it, which requires an
increse in current, so will not allow the tunnel diode to enter the negative
resistance region. Instead, it jumps over to the right side of the
curve. Now the inductor has a negative voltage, so the current slows
down and the tunnel diode traces out the right side of its curve until
it hits the negative resistance region again, at which point the tunnel
diode jumps over to the left side of the curve and the cycle begins again.



Next: Sawtooth Oscillator
Previous: Tunnel Diode I/V Curve
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-eclosc.html

Emitter-Coupled LC Oscillator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an emitter-coupled oscillator , which
uses an LC
circuit combined with a
transistor
for feedback.

When the oscillator starts up, Q2 is conducting; the current comes
from the capacitor, charging it until the voltage across it is large enough
to get a current across the inductor. As the current across the
inductor peaks, the output voltage rises (the inductor's voltage
difference is reduced), which causes the current across Q2 to slow down.

But the inductor isn't done providing current, so the voltage across
it (and the output voltage) rises as it charges the capacitor. Once the
voltage turns positive, Q1 starts conducting, which raises the voltage of
the two coupled emitters and prevents Q2 from conducting. This keeps
Q2 from sinking any current, which causes the voltage across the
inductor to rise faster, since Q1 is not sinking much base current.

Once the output voltage is at about 690mV, Q1 can draw all the current from
the inductor, so the voltage across the capacitor (and inductor)
peaks. As the current across the inductor peaks, the voltage drops,
which causes the Q1 base current to slow down.
Eventually the output voltage goes negative, which shuts off Q1 and
turns on Q2. Q2 doesn't draw much base current, though, until the
output voltage is at about -690 mV. At this point, the cycle begins again.



Next: RTL Inverter
Previous: Hartley Oscillator
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-cmosinvertercap.html

CMOS Inverter (w/capacitance)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







In the previous example , the inverter used no
power at all. This example shows a more realistic model of an inverter, with
parasitic capacitance
between the source/drain and gate. Charging the capacitances takes current
whenever the gate changes state. This takes time, and consumes power.


Next: CMOS Inverter (slow transition)
Previous: CMOS Inverter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-multivib-bi.html

Bistable Multivibrator (Flip-Flop)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a bistable multivibrator , or
flip-flop . Click on the " set " input
at lower left to bring the output high (5V). Click on the " reset " input at lower right to bring the
output low (ground).

The transistors are cross-coupled in such a way that the circuit has
two stable states. Initially, Q2 is on and Q1 is off. Since Q1 is
off, no current is flowing through it, and its collector voltage is
close to 5V. This allows current to flow through into
the base of Q2, which keeps Q2
switched on. Q2
is in saturation mode, keeping the collector voltage close
to ground; this prevents any current from flowing into the base
of Q1 to switch it on.

If you click the " set " input momentarily, this provides base current
to Q1, switching it on,
bringing its collector low, which stops the base current flowing to
Q2. So the circuit switches to the
opposite state. Clicking the " reset " input switches back.


Next: Astable Multivibrator (Oscillator)
Previous: Improved Push-Pull Follower
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-spark-marx.html

Marx Generator





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a Marx
generator , a circuit that uses spark gaps to build a high-voltage
pulse. A 5kV input voltage charges the capacitors until the first
spark gap reaches its breakdown voltage and fires. This causes a
large voltage to be applied to the second spark gap, causing it to
fire as well. All the spark gaps fire in turn, creating a pulse of
about 18kV.

This circuit seems to rely on the parasitic capacitance of the
resistors in order to function. The resistors in this simulator do
not have any capacitance, so some 10pF capacitors have been added to get
the circuit to work. If you were building this circuit in real life,
you would not need those.



Previous: Tesla Coil
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-filt-hipass-af.html

High-Pass Filter response (RC)




Sorry, you need a Java-enabled browser to see the simulation.







This is the same high-pass filter ,
showing the frequency response in
dB for a range
of frequencies. You can click on the frequency response graph to see
the circuit in operation at that particular frequency.


Next: Low-Pass Filter (RC)
Previous: High-Pass Filter (RC)
Analog Filter Applet
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-zenerreffollow.html

Zener Voltage Reference w/ Follower





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit shows a Zener diode
used as a voltage reference .
A follower has been added, reducing the current (and power
dissipation) on the Zener, and allowing a higher output current.



Next: DC Restoration
Previous: Zener Voltage Reference
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-capmultcaps.html

Caps of Various Capacitances





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







Here are three circuits which are identical except for the size of the capacitors
in them. A larger capacitor (higher capacitance) can store more charge, so the current
will be greater for a given voltage. The capacitor on top is the largest, so the current
flow is greatest in that circuit.


Next: Caps w/ Various Frequencies
Previous: A/C Response of Inductor
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-indpar.html

Inductors in Parallel





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This demonstrates that the inductance of two inductors in parallel is
equal to the reciprocal of the sum of the reciprocals of the
separate inductances.


Next: Capacitors in Series
Previous: Inductors in Series
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-voltdivide.html

Voltage Divider





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a voltage divider , a simple
circuit that can be used to derive a reference voltage from a known supply voltage. In the middle,
two equal resistors generate a 5 V voltage from the 10 V supply. On the right, four resistors
provide 7.5 V, 5 V, and 2.5 V.


Next: Inductors in Series
Previous: RLC Circuit
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-amp-sum.html

Summing Amplifier





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit outputs the (inverted) sum of the voltages of two input
signals. In this case, the first input is a 200 Hz sine wave, and the
second input is a 20 Hz square wave .

The op-amp
attempts to keep its & ndash; input at the same voltage as the + input
(which is at ground). So, both input signals are driving 1k
resistors whose other end is at ground. The current across the third resistor
is the sum of the two currents,
so the voltage drop must be equal to the sum of the two voltage drops,
which is the (negative) sum of the input voltages.


Next: Log Amplifier
Previous: Differential Amplifier
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-cmostransgate.html

CMOS Transmission Gate





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is a CMOS transmission
gate , which acts as a switch. When the switch input is high, the 40 Hz signal
can flow through the transmission gate. When the switch input is low, it can't;
the transmission gate acts as an open circuit.


Next: CMOS Multiplexer
Previous: CMOS Inverter (slow transition)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-cmosinverterslow.html

CMOS Inverter (slow transition)





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This is an inverter with a filter on the input to cause it to change more slowly. It
shows that there is a spike in current across the inverter when the input is in
transition, causing power consumption whenever the gate changes state.


Next: CMOS Transmission Gate
Previous: CMOS Inverter (w/capacitance)
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-counter8.html

8-Bit Ripple Counter





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit is a 8-bit binary
ripple counter .
All the JK flip-flops are configured to toggle their state on a downward transition of their
clock input, and the output of each flip-flop is fed into the next flip-flop's clock. So,
when each bit changes from 1 to 0, it " carries the one " to the next higher bit.


Next: Synchronous Counter
Previous: 4-Bit Ripple Counter
Index












java@ falstad.com
Generated Sat Nov 15 2014


circuit.zip > e-majority.html

Majority Logic





Sorry, you need a Java-enabled browser to see the simulation.






& nbsp;







This circuit outputs high if a majority of the inputs are high.


Next: 2-Bit Comparator
Previous: 2-to-1 Mux
Index












java@ falstad.com
Generated Sat Nov 15 2014