http://obrazki.elektroda.pl/4570965400_1335100616.jpg Witam. Historia tego zasilacza jest nieco zawiła, a usterka wydaje się niby prosta. Pracowałem wczoraj na komputerze do dość późna. Komputer działał przez 4-5 godzin bez przerwy (zwykle taki jest jego dzienny czas pracy). Około 22:00 wyłączyłem go, jednak po wyłączeniu zwróciłem uwagę na gasnące co parę sekund kontrolki klawiatury. Myśląc, że to jakiś problem z zamknięciem systemu, włączyłem komputer ponownie. Jednak wymagało to nieco dłuższego przytrzymania włącznika - co nie było już normalnym objawem. Wyłączyłem go awaryjnie trzymając włącznik 4 sek. Odłączyłem zasilacz całkowicie od sieci do rana. Dziś rano po włączeniu do sieci znów taki sam objaw. Pomiar napięcia na pinie 5VSTB wykazał, że napięcie to zanika co parę sekund. Zasilacz został wymontowany. Pierwsza rzecz to sprawdzenie czy przypadkiem nie wysechł kondensator elektrolityczny na wyjściu PP. Optycznie wyglądał OK, ale został wymieniony na nowy 1000µF/10V (oczywiście LowESR). Niestety to nie wyeliminowało usterki. Pomiary paru kluczowych elementów PP nie wykazały by były one uszkodzone. Profilaktycznie wymieniłem jeszcze 10µF/50V i 22µF/50V po jej pierwotnej stronie. Zasilacz w dalszym ciągu "próbkuje" na linii 5VSTB i nie można go włączyć na sztucznym obciążeniu. Występuje też dodatkowy objaw, który zauważony został podczas pomiarów. Gdy napięcie za mostkiem jest "normalne", czyli 285V przetwornica PP próbkuje, ale gdy zasilacz zostanie odłączony od sieci i napięcie to zaczyna powoli spadać, to przy 216V przetwornica PP przestaje próbkować i pojawiają się stabilne napięcia wyjściowe: +5V (STBY) i +15,8V (do PWM-a), a zasilacz ma skłonności do prawidłowego uruchomienia się na ułamek sekundy. I teraz mam dylemat czy usterkę wiązać tylko i wyłącznie z PP, czy z pierwotną stroną za mostkiem, czy jednak po wtórnej w sterowniku zbytnio obciążającym jego 15V? Ostatnie jestem skłonny wykluczyć, bo zasilacz chce jednak startować. No i co to jest za układ scalony AT30B (TO-92)? Zasilacz jest dwuletni, co zresztą widać bo prawie się nie zakurzył, a jest to jednostka o mocy 150W występująca w kilku modelach obudów ITX. Oparty jest na elementach: Przetwornica PP: MJE13003, AT30B (TO-92), PC817, TL431 (SOT-23) Przetwornica Główna: 2005AZ, 2x MJE13007, 2x STC945, 2SD882 Napięcia na układzie scalonym 2005 w trybie stand-by: 1 - 4,2V pływa 2 - 4,9V pływa 3 - 0,03V 4 - 0,0V 5 - 0,23V pływa 6 - 0,0V 7 - 2,30V pływa 8 - 2,30V pływa 9 - 0,0V 10 - 1,0V pływa 11 - 1,0V pływa 12 - 0,0V 13 - 0,06V pływa 14 - 0,01V 15 - 0,01V 16 - 1,2V pływa Napięcia gdy zasilacz chwilowo wystartuje przy 216V na pierwotnej stronie, nie dają się zmierzyć bo szybko znikają, a autotransformatora niestety w domu brak. :( Zdjęcia wewnątrz (prosto z aparatu): http://obrazki.elektroda.pl/8011359100_1335096457_thumb.jpghttp://obrazki.elektroda.pl/6579702400_1335096458_thumb.jpghttp://obrazki.elektroda.pl/5251406700_1335096460_thumb.jpghttp://obrazki.elektroda.pl/8116311800_1335096462_thumb.jpg http://obrazki.elektroda.pl/6977649700_1335096463_thumb.jpghttp://obrazki.elektroda.pl/9439508800_1335096465_thumb.jpghttp://obrazki.elektroda.pl/9400562500_1335096467_thumb.jpghttp://obrazki.elektroda.pl/8268305000_1335096468_thumb.jpg Dodano po 3 45 : Problem układu scalonego AT30B się nieco rozwikłał i dotarłem do kopii noty, a jest to sterownik SMPS firmowany przez ATC Technology. Poprawiłem TONI_2003.
%
Page 1 of 9
T
E
C
H
N
O
L
O
G
AT30
Y
High Performance Off-line Controller
Description
Features
The AT30 is a high performance green-energy offline
● High Performance with 0.15W Standby Power
power supply controller. It features a scalable driver
● Current Mode Operation
for driving external NPN or MOSFET transistors for
● PWM/Pulse-Skipping Switching Control
line voltage switching. This proprietary architecture
● Emitter Drive Allows Safe NPN Flyback Use
enables many advanced features to be integrated
● 65kHz or 100kHz Switching Frequency
into a small package (TO-92 or SOT23-5), resulting
● Leading Edge Blanking
in lowest total cost solution.
● Complete Protection Circuits including
The AT30 design has 6 internal terminals and is a
Over-Current Protection, Under-Voltage Protection
pulse frequency and width modulation IC with many
and Hiccup Mode for Short Circuit
flexible packaging options. One combination of
● Flexible Packaging Options(including TO-92)
internal terminals is packaged in the space-saving
● Selectable 0.4A to 1.2A Current Limit
TO-92 package (A/B/C/D versions) for 65kHz or
● Lowest Total Cost Solution
100kHz switching frequency and with 400mA or
800mA current limit. The E version (SOT23-5) can
be configured for higher current limit.
HIGH VOLTAGE DC
Consuming only 0.15W in standby, the IC features
over-current, hiccup mode short circuit, and
under-voltage protection mechanisms. The AT30 is
R1
ideal for use in high performance universal adaptors
and chargers.
D2
Q1
R2
Applications
IC1
Offline PWM AC/DC converter for
DRV
AT30
● Battery Charger
C1
VDD
OPTOCOUPLER
D1
GND
● Power Adaptor
● Universal Off-line Power Supplies
● Standby Power Supplies
Figure1. Simplified Application Circuit of AT30
1
http://www.sirectsemi.com/atc
FP5101
http://dc205.4shared.com/doc/0nbIa9vj/preview.html
2012-04-22
%
Page 2 of 9
T
E
C
H
N
O
L
O
G
AT30
Y
Ordering Information
Part Number
Switching Frequency
Current Limit
Temperature Range
Package
Pins
AT30A
65kHz
400mA
-40°C to 85°C
To-92
3
AT30B
65kHz
800mA
-40°C to 85°C
To-92
3
AT30C
100kHz
400mA
-40°C to 85°C
To-92
3
AT30D
100kHz
800mA
-40°C to 85°C
To-92
3
AT30E
Selectable
Adjustable
-40°C to 85°C
SOT23-5
5
Pin Assignments
TO-92
SOT23-5
AT30A
AT30B
AT30E
AT30C
AT30D
Functional Pin Description
Pin Number
TO-92
PIN
NAME
Pin Function
SOT23-5
1
1
VDD
Power Supply Pin. Connect to optocoupler's emitter. Internally limited to 5.5V max.
Bypass to GND with a proper compensation network.
2
2
GND
Ground
DRV
Driver Output (TO-92 Only). Connect to emitter of the high voltage NPN or MOSFET. For
AT30A/C, DRV pin is internally connected to DRV1. For AT30B/D, DRV pin is internally
connected to both DRV1 and DRV2.
5
DRV1
Driver Output 1 (SOT23-5 Only). Also used as supply input during startup.
4
DRV2
Driver Output 2 (SOT23-5 Only)
3
FREQ
Frequency Select (SOT23-5 Only). This terminal has an internal 200k pull down
resistor. Connect to VDD for 100kHz operation. Connect to GND or leave unconnected for
65kHz operation.
3
2
http://www.sirectsemi.com/atc
FP5101
http://dc205.4shared.com/doc/0nbIa9vj/preview.html
2012-04-22
%
Page 3 of 9
T
E
C
H
N
O
L
O
G
AT30
Y
Absolute Maximum Ratings
Thermal Information
● VDD,FREQ Voltage------------------------------ -0.3V to + 6V
● Junction Temperature------------------------- -40°C to +150°C
● VDD current---------------------------------------------------20mA
● Storage Temperature Range---------------- -55°C to +150°C
● VDRV, DRV1, DRV2 Voltage ---------------- -0.3V to + 18V
● Lead Temperature (Soldering, 10sec) ------------------300°C
● Continuous DRV,
DRV1, DRV2 Current---------------------
ESD Classification
●Maximum Power Dissipation --------
Internally limited
0.6W for TO-92
0.39W for SOT23-5
● Human Body Model-----------------------------------2000V
● Machine Model-------------------------------------------200V
Note Stresses beyond those listed under “Absolute Maximum Ratings " may cause permanent damage to the device.
Electrical Characteristics
(TA = 25°C, VDD=4V if not otherwise noted)
Parameter
Symbol
Test Conditions
Min
Typ
5
VDD Start Voltage
V START
Rising edge
4.75
V DD Clamp Voltage
VDD_CLP
I(V DD )=10mA
5.15 5.45 5.75
Supply Current
I DD
Max Units
Startup Supply Current
IDDST
VDD Under-Voltage Threshold
5.25
V
0.7
V DD = 4V before V
U UV
0.1
0.23 0.45
UV
Falling edge
V
VDRVST
AT30A/C
8.6
10.5
AT30B/D
DRV1 Start Voltage
mA
mA
3.17 3.35 3.53
DRV1 must be
V
9.6
11.5
V
higher than this
voltage to start up.
DRV1 Short-Circuit Detect Threshold
V DRVSC
AT30A/C
6.8
AT30A/B or FREQ = 0
Switching frequency
V
55
65
85
75
100
125
67
75
83
F SW
kHz
AT30C/D or FREQ = V
Maximum Duty Cycle
D MAX
Minimum Duty Cycle
D MIN
Effective Current Limit
ILIM
DD
V DD =4V
V DD =4.6V
3.5
AT30A/C
%
400
AT30B/D
800
VDD =V UV +0.1V
mA
V DD to DRV1 Current Coefficient
G GAIN
-0.29
VDD Dynamic Impedance
R VDD
9
DRV1/DRV2 Driver On-Resistance
R DRV1, 2
%
I DRV1 = I DRV2 = 0.05A
A/V
k
3.6
DRV1 Rise Time
1nF load, 15
pull-up
30
ns
DRV1 Fall Time
1nF load, 15
pull-up
20
ns
DRV1 and DRV2 Switch Off Current
Driver off, V
DRV1
=V
DRV2
= 10V
12
30
µA
3
http://www.sirectsemi.com/atc
FP5101
http://dc205.4shared.com/doc/0nbIa9vj/preview.html
2012-04-22
%
Page 4 of 9
T
E
C
H
N
O
L
O
G
AT30
Y
N-channel MOSFET. This emitter-drive method
Operation Description
takes advantage of the high V
CBO
of the transistor,
allowing a low cost transistor such as ‘13003 (V
CBO
Figure 2 shows the Functional Block Diagram of the
= 700V) or ‘13002 (V
CBO
= 600V) to be used for a
AT30. The main components include switching
wide AC input range. The slew-rate limited driver
control logic, two on-chip medium-voltage
coupled with the turn-off characteristics of an
power-MOSFETs with parallel current sensor, driver,
external NPN result in lower EMI.
oscillator and ramp generator, current limit VC
The driver peak current is designed to have a
generator, error comparator, hiccup control, bias and
negative voltage coefficient with respect to supply
undervoltage-lockout, and regulator circuitry.
voltage V
DD
, so that lower supply voltage
As seen in Figure 2, the design has 6 internal
automatically results in higher DRV1 peak current.
terminals. V
DD
is the power supply terminal. DRV1
This way, the optocoupler can control V
DD
directly
and DRV2 are linear driver outputs that can drive the
to affect driver current.
emitter of an external high voltage NPN transistor or
DRV1
VDD
-
REGULATOR
FREQ
200k
OSC &
RAMP
CURRENT
+
3.6V(AT30A/C)
4.6V(AT30B/D)
BIAS &
UVLO
9k
DRV2
HICCUP
CONTROL
PWM/PULSE
-SKIPPING
SWITCHING
CONTROL
LOGIC
SLEW
1x
56x
56x
20k
ILIM VC
GENERATOR
-
4.75V
ERROR
COMP
+
40
-
20k
+
GND
GND
Figure 2. Block Diagram of AT30
4
http://www.sirectsemi.com/atc
FP5101
http://dc205.4shared.com/doc/0nbIa9vj/preview.html
2012-04-22
%
Page 5 of 9
T
E
C
H
N
O
L
O
G
AT30
Y
Startup Sequence
Normal Operation
Figure 1 shows a Simplified Application Circuit for
In normal operation, the feedback signal from the
the AT30. Initially, the small current through resistor
secondary side is transmitted through the
optocoupler as a current signal into VDD pin, which
R1 charges up the capacitor C1, and the BJT acts as
has dynamic impedance of 9k
a follower to bring up the DRV1 voltage. An internal
regulator generates a V
DD
3.6V for AT30A/C (V
DRV1
limits it to 5.5V max. As V
voltage equal to V
DRV1
–
– 4.6V for AT30B/D) but
DD
regulator sourcing function stops and V
DD
drop due to its current consumption. As V
decreases below 4.75V, the IC starts to operate with
begins to
DD
voltage
DD
voltage affects the switching of the IC. As seen from
the Functional Block Diagram, the Current Limit VC
Generator uses the V
crosses 5V, the
. The resulting V
DD
voltage difference with
4.75V to generate a proportional offset at the
negative input of the Error Comparator.
The drivers turn on at the beginning of each
increasing driver current. When the output voltage
switching cycle. The current sense resistor current,
reaches regulation point, the optocoupler feedback
which is a fraction of the transformer primary
circuit stops V
DD
from decreasing further. The
switching action also allows the auxiliary windings to
take over in supplying the C1 capacitor. Figure 3
current, increases with time as the primary current
increases. When the voltage across this current
sense resistor plus the oscillator ramp signal equals
shows a typical startup sequence for the AT30.
Error Comparator's negative input voltage, the
To limit the auxiliary voltage, use a 12V zener diode
drivers turn off. Thus, the peak DRV1 current has a
for AT30A/C or a 13V zener for AT30B/D (D1 diode
calculated from the following:
in Figure 1).
Even though up to 2M
negative voltage coefficient of -0.29A/V and can be
startup resistor (R1) can be
IDRV1PEAK
= 0.29A/V • (4.75V – V
DD
)
used due to the very low startup current, the actual
for V
R1 value should be chosen as a compromise
When the output voltage is lower than regulation,
DD
& lt; 4.75V and duty cycle & lt; 50%.
between standby power and startup time delay.
Figure 3. Startup Waveforms
5
http://www.sirectsemi.com/atc
FP5101
http://dc205.4shared.com/doc/0nbIa9vj/preview.html
2012-04-22
%
Page 6 of 9
T
E
C
H
N
O
L
O
G
AT30
Y
the current into VDD pin is zero and VDD voltage
each switching cycle (with minimum on time of
decreases. At V
500ns) to the output causes VDD to increase
DD
=V
UV
= 3.3V, the peak DRV1
current has maximum value of 400mA.
slightly above 4.75V. The PWM Switching Control
Current Limit Adjustment
Logic block is able to detect this condition and
The IC's proprietary driver arrangement allows the
prevents the IC from switching until V
current limit to be easily adjusted between 400mA
4.75V again. This results in a pulse-skipping action
and 1.2A. To understand this, the drivers have to be
with fixed pulse width and varying frequency, and
utilized as linear resistive devices with typically 3.6
low power consumption because the switching
(rather than as digital output switches). The current
frequency is reduced. Typical system standby
limit can then be calculated through linear
power consumption is 0.15W.
combination as shown in Figure 4. For TO-92
Short Circuit Hiccup
package, the AT30A/C are preprogrammed to
When the output is short circuited, the AT30 enters
400mA current limit and the AT30B/D are
hiccup mode operation. In this condition, the
preprogrammed to 800mA current limit. For AT30E
auxiliary supply voltage collapses. An on-chip
(SOT23-5) packages, both DRV1 and DRV2
detector compares DRV1 voltage during the
terminals are provided.
off-time of each cycle to 6.8V. If DRV1 voltage is
DD
is below
below 6.8V, the IC will not start the next cycle,
I LIM
DRV1
400 mA
causing both the auxiliary supply voltage and V
DRV2
DD
to
reduce further. The circuit enters startup mode
when V
DRV1
I LIM
DRV2
400 mA
RD
7 .2 R D
3.6 R D
DD
drops below 3.3V. This hiccup behavior
continues until the short circuit is removed. In this
behavior, the effective duty cycle is very low
resulting in very low short circuit current.
To make sure that the IC enters hiccup mode
DRV1
I LIM
DRV2
800 mA
easily, the transformer should be constructed so
that there is close coupling between secondary and
RD
DRV1
I LIM
400 mA
DRV2
RD
3. 6
auxiliary, so that the auxiliary voltage is low when
2
the output is short-circuited. This can be achieved
with the primary/auxiliary/secondary sequencing
Figure 4. Driver Output Configurations
from the bobbin.
Pulse Skipping
The PWM/Pulse Skipping Switching Control Logic
block operates in different modes depending on the
output load current level. At light load, the VDD
voltage is around 4.75V. The energy delivered by
6
http://www.sirectsemi.com/atc
FP5101
http://dc205.4shared.com/doc/0nbIa9vj/preview.html
2012-04-22
%
Page 7 of 9
T
E
C
H
N
O
L
O
G
AT30
Y
Application Example
Layout Considerations
The application circuit in Figure 6 provides a
The following should be observed when doing
5V/0.75A constant voltage/constant current output.
layout for the AT30:
An AT30 is used in combination with the TL431 for
1. Use a " star point " connection at the GND pin of
highest efficiency and lowest component count.
AT30 for the VDD bypass components (C5 and C6
To change the constant output voltage V
constant current limit I
OUTCC
and
OUTCV
in Figure 6), the input filter capacitor (C2 in Figure
, modify R7 and R6 as
6) and other ground connections on the primary
following:
side.
R7 = 80k
• [(V
R6 = 250mV/I
OUTCV
-1V)/3.8V - 1]
2. Keep the loop across the input filter capacitor,
the transformer primary windings, and the high
OUTCC
The performance of this circuit is summarized
voltage transistor, and the AT30 as small as
in Table 1.
possible.
Table 1. System Performance of Circuit in Figure 6
3. Keep AT30 pins and the high voltage transistor
110VAC
220VAC
pins as short as possible.
Standby Power
0.09W
0.15W
4. Keep the loop across the secondary windings,
Current Limit
0.75A
0.75A
the output diode, and the output capacitors as small
Full Load Efficiency
65%
67%
as possible.
5. Allow enough copper area under the high voltage
transistor, output diode, and current shunt resistor
for heat sink.
RF1
AC1
10
2W
LF2
D1
D6
5V/0.75A
7uH
85~265VAC
AC2
C4
R4
R2
OUTPUT+
SR260
1000PF
100K
1M
T1
1KV
0.5W
D2
FR107
D3
R3
IN4148
510
+
0.5W
+
C1
4.7uF
400V
+
D4
C2
C7
470uF
+
10V
Q1
4.7uF
C8
680uF
16V
400V
IN4148
R3
IC2
330
+
C3
22uF
25V
R6
R7
13K
3
1
R1
AT30A
200
D5
1N5242B
LF1
12V
+
C5
IC3
C6
10nF
2
R5
2.2K
47K
PC817
C6
10nF
TL431
R8
12K
10uF
6V
820uH
OUTPUT-
Figure 6. A 3.75W Charger Using AT30 in combination with TL431
7
http://www.sirectsemi.com/atc
FP5101
http://dc205.4shared.com/doc/0nbIa9vj/preview.html
2012-04-22
%
Page 8 of 9
T
E
C
H
N
O
L
O
G
AT30
Y
Outline Information
SYMBOL
DIMENSION IN
MILIMETERS
DIMENSION IN
INCHES
SYMBOL
DIMENSION IN
MILIMETERS
DIMENSION IN
INCHES
MIN
MAX
MIN
MAX
MIN
MAX
A
3.300
3.700
0.130
0.146
∆k
-1.0
1.0
-0.039
0.039
A1
1.100
1.400
0.043
0.055
F1,F2
MIN
MAX
0.360
D
4.400
D1
4.300
0.510
3.430
E
0.550
4.700
0.015
0.014
0.173
0.087
0.110
21
0.748
0.827
15.5
16.5
0.610
0.650
L1
c
0.380
2.8
19
H0
b
2.2
H
2.5
0.022
0.020
0.185
0.0098
1.600
0.000
0.380
0.104
0.063
0.000
12.5
12.9
0.492
0.508
3.55
4.15
0.140
0.163
P2
6.05
6.65
0.238
0.262
Q1
3.8
4.2
0.150
0.165
0.35
0.45
0.014
0.018
0.15
0.25
0.006
0.010
17.5
19
0.689
0.748
5.5
6.5
0.217
0.256
W1
h
0.096
0.039
P0
W0
Φ
2.640
0.512
-0.039
W
2.440
0.050TYP
0.488
1.0
P1
0.185
13.0
-1.0
t2
e1
1.270TYP
0.169
12.4
t1
e
4.700
P
∆P
0.135
8.5
9.5
0.335
0.374
0.015
W2
1.0
0.039
8
http://www.sirectsemi.com/atc
FP5101
http://dc205.4shared.com/doc/0nbIa9vj/preview.html
2012-04-22
%
Page 9 of 9
T
E
C
H
N
O
L
O
G
AT30
Y
SYMBOL
DIMENSION IN
MILIMETERS
DIMENSION IN
INCHES
MIN
MAX
MIN
MAX
A
1.050
1.250
0.041
0.049
A1
0.000
0.100
0.000
0.004
A2
1.050
1.150
0.041
0.045
b
0.300
0.400
0.012
0.016
c
0.100
0.200
0.004
0.008
D
2.820
3.020
0.111
0.119
E
1.500
1.700
0.059
0.067
E1
2.650
2.950
0.104
0.116
e
e1
L
L1
θ
0.950TYP
1.800
0.067TYP
2.000
0.700REF
0.300
0
0
0.071
0.079
0.028REF
0.600
8
0
0.012
0
0
0.024
8
0
-End of Specifications-
U.S.A.: atc@sirectsemi.com
China:
hhc@szatc.com.cn
9
http://www.sirectsemi.com/atc
Amaxtronics Technology Corp.
http://dc205.4shared.com/doc/0nbIa9vj/preview.html
FP5101
2012-04-22