Masz jakiś multimetr, nawet najprostszy z Castoramy? Chodzi o pomiar napięcia zasilania, które trafia na kostkę TDA i inne układy. Może tutaj jest problem, bo żółty brat coś zakombinował w torze zasilania. Trzeba to sprawdzić i pomierzyć. Tutaj może być kolejna trudność, wg Twojego opisu, "jednorazowość" chińskiej myśli technicznej. Datasheet w załączeniu, jak dasz radę, sprawdź napięcia na końcówkach 6 i 20, jak nie, to może ktoś Ci pomoże.
TDA7388
4 X 41W QUAD BRIDGE CAR RADIO AMPLIFIER
1
■
■
■
■
■
■
■
■
FEATURES
Figure 1. Package
HIGH OUTPUT POWER CAPABILITY:
4 x 41W/4Ω MAX.
4 x 25W/4Ω @ 14.4V, 1KHz, 10%
LOW DISTORTION
LOW OUTPUT NOISE
ST-BY FUNCTION
MUTE FUNCTION
AUTOMUTE AT MIN. SUPPLY VOLTAGE
DETECTION
LOW EXTERNAL COMPONENT COUNT:
– INTERNALLY FIXED GAIN (26dB)
Flexiwatt25
Table 1. Order Codes
Part Number
Package
TDA7388
Flexiwatt25
■
■
■
■
■
REVERSED BATTERY
ESD
3
DESCRIPTION
– NO BOOTSTRAP CAPACITORS
2
■
– NO EXTERNAL COMPENSATION
■
The TDA7388 is a new technology class AB Audio
Power Amplifier in Flexiwatt 25 package designed
for high end car radio applications.
■
PROTECTIONS:
Thanks to the fully complementary PNP/NPN output configuration the TDA7388 allows a rail to rail
output voltage swing with no need of bootstrap capacitors. The extremely reduced components
count allows very compact sets.
OUTPUT SHORT CIRCUIT TO GND, TO VS,
ACROSS THE LOAD
VERY INDUCTIVE LOADS
OVERRATING CHIP TEMPERATURE WITH
SOFT THERMAL LIMITER
LOAD DUMP VOLTAGE
FORTUITOUS OPEN GND
Figure 2. Block and Application Diagram
Vcc1
Vcc2
470µF
100nF
ST-BY
N.C.
MUTE
OUT1+
IN1
OUT10.1µF
PW-GND
OUT2+
IN2
OUT2PW-GND
0.1µF
OUT3+
IN3
OUT30.1µF
PW-GND
OUT4+
IN4
OUT4PW-GND
0.1µF
AC-GND
0.47µF
SVR
TAB
S-GND
47µF
D99AU1018
July 2005
Rev. 1
1/10
TDA7388
Table 2. Absolute Maximum Ratings
Symbol
Value
Unit
Operating Supply Voltage
18
V
VCC (DC)
DC Supply Voltage
28
V
VCC (pk)
Peak Supply Voltage (t = 50ms)
50
V
Output Peak Current:
Repetitive (Duty Cycle 10% at f = 10Hz)
Non Repetitive (t = 100µs)
4.5
5.5
A
A
Power dissipation, (Tcase = 70°C)
80
W
Tj
Junction Temperature
150
°C
Tstg
Storage Temperature
– 55 to 150
°C
VCC
IO
Ptot
Parameter
Figure 3. Pin Connection
HSD
P-GND4
MUTE
OUT4-
VCC
OUT4+
OUT3-
OUT3+
P-GND3
IN3
AC-GND
IN4
IN2
S-GND
IN1
SVR
OUT1+
P-GND1
VCC
OUT1-
ST-BY
OUT2+
OUT2-
TAB
25
P-GND2
1
D94AU159A
Table 3. Thermal Data
Symbol
Parameter
Rth j-amb
Thermal Resistance Junction to Case
2/10
Value
max
Unit
1
°C/W
TDA7388
Table 4. Electrical Characteristcs (VS = 14.4V; f = 1KHz; Rg = 600Ω; RL = 4Ω;Tamb = 25°C; Refer to the
Test and application diagram, unless otherwise specified.)
Symbol
Parameter
Test Condition
Quiescent Current
RL = ∞
VOS
Output Offset Voltage
Play Mode
∆VOS
During Mute ON/OFF Output
Offset Voltage
Iq1
Gv
Po
Output Power
Typ.
Max.
Unit
120
190
350
mA
±80
mV
±80
Voltage Gain
Min.
mV
27
dB
25
26
THD = 10%; VS = 14.4V
22
26
W
Max.Output Power (*)
VS = 14.4V
38
41
W
THD
Distortion
Po = 4W
eNo
Output Noise
Po max
0.04
0.15
%
" A " Weighted
50
70
µV
Bw = 20Hz to 20KHz
70
100
µV
SVR
Supply Voltage Rejection
f = 100Hz; Vr = 1Vrms
50
65
dB
fch
High Cut-Off Frequency
Po = 0.5W
100
200
KHz
Ri
Input Impedance
70
100
KΩ
CT
Cross Talk
f = 1KHz; Po = 4W
60
70
dB
f = 10KHz; Po = 4W
50
60
dB
ISB
St-By Current Consumption
50
VSB out
St-By OUT Threshold
Voltage
(Amp: ON)
VSB IN
St-By IN Threshold Voltage
(Amp: OFF)
Mute Attenuation
POref = 4W
AM
VM out
Mute OUT Threshold Voltage (Amp: Play)
VM in
Mute IN Threshold Voltage
VS Automute Threshold
V
1.5
80
(Amp: Mute); Att ≥ 80dB; POref = 4Ω
(Amp: Play); Att & lt; 0.1dB; PO = 0.5Ω
90
(Amp: Mute)
VAM in
3.5
Ipin22
Muting Pin Current
VMUTE = 1.5V
(Source Current)
µA
V
dB
3.5
V
1.5
7.6
5
V
6.5
8.5
V
V
11
20
µA
(*) Saturated square wave output.
(
3/10
TDA7388
Figure 4. Standard Test and Application Circuit
C8
0.1µF
C7
2200µF
Vcc1-2
Vcc3-4
6
R1
ST-BY
20
9
4
10K
R2
C9
1µF
MUTE
8
22
47K
C10
1µF
5
C1
IN1
2
11
17
12
18
C2 0.1µF
IN3
C3 0.1µF
21
14
IN4
S-GND
24
13
C5
0.47µF
OUT4
23
16
4/10
OUT3
19
15
C4 0.1µF
OUT2
3
0.1µF
IN2
OUT1
7
10
SVR
C6
47µF
25
HSD
1
TAB
D95AU335B
TDA7388
4
P.C.B. AND COMPONENT LAYOUT OF THE FIGURE 4
Figure 5. Components & Top Copper Layer
Figure 6. Bottom Copper Layer
5/10
TDA7388
Figure 7. Quiescent Current vs. Supply Voltage
Figure 10. Distortion vs. Output Power
Figure 8. Quiescent Output Voltage Supply
Voltage
Figure 11. Distortion vs. Frequency
Figure 9. Output Power vs. Supply Voltage
Figure 12. Supply Voltage Rejection vs.
Frequency.
6/10
TDA7388
Figure 13. Output Noise vs. Source
Resistance.
5
Figure 14. Power Dissipation & Efficiency vs.
Output Power.
APPLICATION HINTS
(ref. to the circuit of fig. 4)
5.1 SVR
Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence
and, consequently, plays an essential role in the pop optimization during ON/OFF transients. To conveniently serve both needs, ITS MINIMUM RECOMMENDED VALUE IS 10µF.
5.2 INPUT STAGE
The TDA7388’S inputs are ground-compatible and can stand very high input signals (± 8Vpk) without any
performances degradation. If the standard value for the input capacitors (0.1µF) is adopted, the low frequency cut-off will amount to 16 Hz.
5.3 STAND-BY AND MUTING
STAND-BY and MUTING facilities are both CMOS-COMPATIBLE. If unused, a straight connection to Vs
of their respective pins would be admissible.
Conventional/low-power transistors can be employed to drive muting and stand-by pins in absence of true
CMOS ports or microprocessors. R-C cells have always to be used in order to smooth down the transitions
for preventing any audible transient noises.
Since a DC current of about 10 µA normally flows out of pin 22, the maximum allowable muting-series resistance (R2) is 70KΩ, which is sufficiently high to permit a muting capacitor reasonably small (about 1µF).
If R2 is higher than recommended, the involved risk will be that the voltage at pin 22 may rise to above the
1.5 V threshold voltage and the device will consequently fail to turn OFF when the mute line is brought
down. About the stand-by, the time constant to be assigned in order to obtain a virtually pop-free transition
has to be slower than 2.5V/ms.
7/10
TDA7388
Figure 15. Flexiwatt 25 Mechanical Data & Package Dimensions
DIM.
A
B
C
D
E
F (1)
G
G1
H (2)
H1
H2
H3
L (2)
L1
L2 (2)
L3
L4
L5
M
M1
N
O
R
R1
R2
R3
R4
V
V1
V2
V3
MIN.
4.45
1.80
0.75
0.37
0.80
23.75
28.90
22.07
18.57
15.50
7.70
3.70
3.60
mm
TYP.
4.50
1.90
1.40
0.90
0.39
1.00
24.00
29.23
17.00
12.80
0.80
22.47
18.97
15.70
7.85
5
3.5
4.00
4.00
2.20
2
1.70
0.5
0.3
1.25
0.50
MAX.
4.65
2.00
MIN.
0.175
0.070
1.05
0.42
0.57
1.20
24.25
29.30
0.029
0.014
0.031
0.935
1.139
22.87
19.37
15.90
7.95
0.869
0.731
0.610
0.303
4.30
4.40
0.145
0.142
inch
TYP.
0.177
0.074
0.055
0.035
0.015
0.040
0.945
1.150
0.669
0.503
0.031
0.884
0.747
0.618
0.309
0.197
0.138
0.157
0.157
0.086
0.079
0.067
0.02
0.12
0.049
0.019
MAX.
0.183
0.079
OUTLINE AND
MECHANICAL DATA
0.041
0.016
0.022
0.047
0.955
1.153
0.904
0.762
0.626
0.313
0.169
0.173
Flexiwatt25 (vertical)
5˚ (T p.)
3˚ (Typ.)
20˚ (Typ.)
45˚ (Typ.)
(1): dam-bar protusion not included
(2): molding protusion included
V
C
B
V
H
H1
V3
A
H2
O
H3
R3
L4
R4
V1
R2
L2
N
L3
R
L
L1
V1
V2
R2
D
R1
L5
Pin 1
R1
R1
E
G
G1
F
FLEX25ME
M
M1
7034862
8/10
TDA7388
6
REVISION HISTORY
Table 5. Revision History
Date
Revision
July 2005
1
Description of Changes
First Issue
9/10
TDA7388
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
10/10