REKLAMA

TDA7388.pdf

Radio WRD - brak mocy w głośnikach po przeciążeniu

Masz jakiś multimetr, nawet najprostszy z Castoramy? Chodzi o pomiar napięcia zasilania, które trafia na kostkę TDA i inne układy. Może tutaj jest problem, bo żółty brat coś zakombinował w torze zasilania. Trzeba to sprawdzić i pomierzyć. Tutaj może być kolejna trudność, wg Twojego opisu, "jednorazowość" chińskiej myśli technicznej. Datasheet w załączeniu, jak dasz radę, sprawdź napięcia na końcówkach 6 i 20, jak nie, to może ktoś Ci pomoże.


Pobierz plik - link do postu

TDA7388
4 X 41W QUAD BRIDGE CAR RADIO AMPLIFIER
1









FEATURES

Figure 1. Package

HIGH OUTPUT POWER CAPABILITY:
4 x 41W/4Ω MAX.
4 x 25W/4Ω @ 14.4V, 1KHz, 10%
LOW DISTORTION
LOW OUTPUT NOISE
ST-BY FUNCTION
MUTE FUNCTION
AUTOMUTE AT MIN. SUPPLY VOLTAGE
DETECTION
LOW EXTERNAL COMPONENT COUNT:
– INTERNALLY FIXED GAIN (26dB)

Flexiwatt25

Table 1. Order Codes
Part Number

Package

TDA7388

Flexiwatt25









REVERSED BATTERY
ESD

3

DESCRIPTION

– NO BOOTSTRAP CAPACITORS

2



– NO EXTERNAL COMPENSATION



The TDA7388 is a new technology class AB Audio
Power Amplifier in Flexiwatt 25 package designed
for high end car radio applications.



PROTECTIONS:

Thanks to the fully complementary PNP/NPN output configuration the TDA7388 allows a rail to rail
output voltage swing with no need of bootstrap capacitors. The extremely reduced components
count allows very compact sets.

OUTPUT SHORT CIRCUIT TO GND, TO VS,
ACROSS THE LOAD
VERY INDUCTIVE LOADS
OVERRATING CHIP TEMPERATURE WITH
SOFT THERMAL LIMITER
LOAD DUMP VOLTAGE
FORTUITOUS OPEN GND

Figure 2. Block and Application Diagram
Vcc1

Vcc2
470µF

100nF

ST-BY
N.C.

MUTE

OUT1+
IN1

OUT10.1µF

PW-GND
OUT2+

IN2

OUT2PW-GND

0.1µF

OUT3+
IN3

OUT30.1µF

PW-GND
OUT4+

IN4

OUT4PW-GND

0.1µF
AC-GND
0.47µF

SVR

TAB

S-GND

47µF
D99AU1018

July 2005

Rev. 1
1/10

TDA7388
Table 2. Absolute Maximum Ratings
Symbol

Value

Unit

Operating Supply Voltage

18

V

VCC (DC)

DC Supply Voltage

28

V

VCC (pk)

Peak Supply Voltage (t = 50ms)

50

V

Output Peak Current:
Repetitive (Duty Cycle 10% at f = 10Hz)
Non Repetitive (t = 100µs)

4.5
5.5

A
A

Power dissipation, (Tcase = 70°C)

80

W

Tj

Junction Temperature

150

°C

Tstg

Storage Temperature

– 55 to 150

°C

VCC

IO

Ptot

Parameter

Figure 3. Pin Connection

HSD

P-GND4

MUTE

OUT4-

VCC

OUT4+

OUT3-

OUT3+

P-GND3

IN3

AC-GND

IN4

IN2

S-GND

IN1

SVR

OUT1+

P-GND1

VCC

OUT1-

ST-BY

OUT2+

OUT2-

TAB

25

P-GND2

1

D94AU159A

Table 3. Thermal Data
Symbol

Parameter

Rth j-amb

Thermal Resistance Junction to Case

2/10

Value
max

Unit

1

°C/W

TDA7388
Table 4. Electrical Characteristcs (VS = 14.4V; f = 1KHz; Rg = 600Ω; RL = 4Ω;Tamb = 25°C; Refer to the
Test and application diagram, unless otherwise specified.)
Symbol

Parameter

Test Condition

Quiescent Current

RL = ∞

VOS

Output Offset Voltage

Play Mode

∆VOS

During Mute ON/OFF Output
Offset Voltage

Iq1

Gv
Po

Output Power

Typ.

Max.

Unit

120

190

350

mA

±80

mV

±80

Voltage Gain

Min.

mV

27

dB

25

26

THD = 10%; VS = 14.4V

22

26

W

Max.Output Power (*)

VS = 14.4V

38

41

W

THD

Distortion

Po = 4W

eNo

Output Noise

Po max

0.04

0.15

%

" A " Weighted

50

70

µV

Bw = 20Hz to 20KHz

70

100

µV

SVR

Supply Voltage Rejection

f = 100Hz; Vr = 1Vrms

50

65

dB

fch

High Cut-Off Frequency

Po = 0.5W

100

200

KHz

Ri

Input Impedance

70

100

KΩ

CT

Cross Talk

f = 1KHz; Po = 4W

60

70

dB

f = 10KHz; Po = 4W

50

60

dB

ISB

St-By Current Consumption

50

VSB out

St-By OUT Threshold
Voltage

(Amp: ON)

VSB IN

St-By IN Threshold Voltage

(Amp: OFF)

Mute Attenuation

POref = 4W

AM
VM out

Mute OUT Threshold Voltage (Amp: Play)

VM in

Mute IN Threshold Voltage
VS Automute Threshold

V
1.5

80

(Amp: Mute); Att ≥ 80dB; POref = 4Ω
(Amp: Play); Att & lt; 0.1dB; PO = 0.5Ω

90

(Amp: Mute)

VAM in

3.5

Ipin22

Muting Pin Current

VMUTE = 1.5V
(Source Current)

µA

V
dB

3.5

V
1.5
7.6

5

V

6.5
8.5

V
V

11

20

µA

(*) Saturated square wave output.
(

3/10

TDA7388
Figure 4. Standard Test and Application Circuit

C8
0.1µF

C7
2200µF
Vcc1-2

Vcc3-4
6

R1
ST-BY

20
9

4
10K
R2

C9
1µF

MUTE

8
22

47K

C10
1µF

5

C1
IN1

2

11

17

12

18

C2 0.1µF
IN3
C3 0.1µF

21
14

IN4
S-GND

24

13

C5
0.47µF

OUT4

23
16

4/10

OUT3

19

15

C4 0.1µF

OUT2

3

0.1µF
IN2

OUT1

7

10
SVR
C6
47µF

25
HSD

1
TAB
D95AU335B

TDA7388

4

P.C.B. AND COMPONENT LAYOUT OF THE FIGURE 4

Figure 5. Components & Top Copper Layer

Figure 6. Bottom Copper Layer

5/10

TDA7388
Figure 7. Quiescent Current vs. Supply Voltage

Figure 10. Distortion vs. Output Power

Figure 8. Quiescent Output Voltage Supply
Voltage

Figure 11. Distortion vs. Frequency

Figure 9. Output Power vs. Supply Voltage

Figure 12. Supply Voltage Rejection vs.
Frequency.

6/10

TDA7388
Figure 13. Output Noise vs. Source
Resistance.

5

Figure 14. Power Dissipation & Efficiency vs.
Output Power.

APPLICATION HINTS

(ref. to the circuit of fig. 4)
5.1 SVR
Besides its contribution to the ripple rejection, the SVR capacitor governs the turn ON/OFF time sequence
and, consequently, plays an essential role in the pop optimization during ON/OFF transients. To conveniently serve both needs, ITS MINIMUM RECOMMENDED VALUE IS 10µF.
5.2 INPUT STAGE
The TDA7388’S inputs are ground-compatible and can stand very high input signals (± 8Vpk) without any
performances degradation. If the standard value for the input capacitors (0.1µF) is adopted, the low frequency cut-off will amount to 16 Hz.
5.3 STAND-BY AND MUTING
STAND-BY and MUTING facilities are both CMOS-COMPATIBLE. If unused, a straight connection to Vs
of their respective pins would be admissible.
Conventional/low-power transistors can be employed to drive muting and stand-by pins in absence of true
CMOS ports or microprocessors. R-C cells have always to be used in order to smooth down the transitions
for preventing any audible transient noises.
Since a DC current of about 10 µA normally flows out of pin 22, the maximum allowable muting-series resistance (R2) is 70KΩ, which is sufficiently high to permit a muting capacitor reasonably small (about 1µF).
If R2 is higher than recommended, the involved risk will be that the voltage at pin 22 may rise to above the
1.5 V threshold voltage and the device will consequently fail to turn OFF when the mute line is brought
down. About the stand-by, the time constant to be assigned in order to obtain a virtually pop-free transition
has to be slower than 2.5V/ms.

7/10

TDA7388
Figure 15. Flexiwatt 25 Mechanical Data & Package Dimensions
DIM.
A
B
C
D
E
F (1)
G
G1
H (2)
H1
H2
H3
L (2)
L1
L2 (2)
L3
L4
L5
M
M1
N
O
R
R1
R2
R3
R4
V
V1
V2
V3

MIN.
4.45
1.80
0.75
0.37
0.80
23.75
28.90

22.07
18.57
15.50
7.70

3.70
3.60

mm
TYP.
4.50
1.90
1.40
0.90
0.39
1.00
24.00
29.23
17.00
12.80
0.80
22.47
18.97
15.70
7.85
5
3.5
4.00
4.00
2.20
2
1.70
0.5
0.3
1.25
0.50

MAX.
4.65
2.00

MIN.
0.175
0.070

1.05
0.42
0.57
1.20
24.25
29.30

0.029
0.014
0.031
0.935
1.139

22.87
19.37
15.90
7.95

0.869
0.731
0.610
0.303

4.30
4.40

0.145
0.142

inch
TYP.
0.177
0.074
0.055
0.035
0.015
0.040
0.945
1.150
0.669
0.503
0.031
0.884
0.747
0.618
0.309
0.197
0.138
0.157
0.157
0.086
0.079
0.067
0.02
0.12
0.049
0.019

MAX.
0.183
0.079

OUTLINE AND
MECHANICAL DATA

0.041
0.016
0.022
0.047
0.955
1.153

0.904
0.762
0.626
0.313

0.169
0.173

Flexiwatt25 (vertical)

5˚ (T p.)
3˚ (Typ.)
20˚ (Typ.)
45˚ (Typ.)

(1): dam-bar protusion not included
(2): molding protusion included

V
C
B
V
H
H1

V3

A

H2

O

H3

R3

L4

R4
V1
R2

L2

N

L3

R

L

L1

V1

V2

R2

D

R1
L5

Pin 1

R1

R1
E

G

G1

F
FLEX25ME

M

M1

7034862

8/10

TDA7388

6

REVISION HISTORY

Table 5. Revision History
Date

Revision

July 2005

1

Description of Changes
First Issue

9/10

TDA7388

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

10/10