REKLAMA

TDA5210.pdf

DIVERSITY BMW e61 nie działają piloty do zamka

Witam. Niedawno kupiłem BMW e61 wraz z problemem nie działających pilotów centralnego zamka. Jest wielu ludzi którzy oferuje naprawę za niewielkie pieniądze więc sprawa nie może być trudna. Problem rozwiązałem sam i obecnie jestem na etapie oczekiwania na brakującą część. Więc do dzieła. Moduł odpowiedzialny za odbiór sygnałów jest umieszczony pod spojlerem w miejscu gdzie jest światło STOP. Jak zdemontować to ustrojstwo to każdy znajdzie w necie bez problemu. Ja opiszę z czego jest zbudowany ten wzmacniacz i nie wiem dlaczego jest taki drogi. https://obrazki.elektroda.pl/6642315500_1506617320_thumb.jpg Przeanalizowałem budowę tego modułu, Obwód radiowy stanowi układ TDA 5210 Po analizie wynika że pracuje w paśmie 870MHz oraz z modulacją FSK https://obrazki.elektroda.pl/7326015500_1506617986_thumb.jpg Okazuje się że układ nie dostaje napięcia uruchomienia odbiornika na pin 27. Za to odpowiada mikrokontroler firmy NEC o symbolu 12233766A Okazuje się że jest to μPD789860 ,muszę zasmucić jest programowany maską ROM więc nie ma mowy o odczytaniu. https://4donline.ihs.com/images/VipMasterIC/IC/NECC/NECCS04000/NECCS04000-1.pdf?hkey=EF798316E3902B6ED9A73243A3159BB0 Mój zamiast podawać napięcie podaje impulsy. Gdy podałem napięcie na pin 27 TDA5210 generator zaczął działać Na pinie 25 jest wyjście sygnału danych z układu radiowego, na oscyloskopie da się zaobserwować, gdy przyciskamy przyciski na pilocie od pojazdu. Najpierw zanim zaczniecie grzebać w module sprawdzić wiązkę klapy, która się przeciera. Na zdjęciu opis napięć jakie powinny być przy dobrej wiązce. https://obrazki.elektroda.pl/7327216200_1506618257_thumb.jpg Przez procesor również przesyłana jest sygnał do zamka. Procesor jest uszkodzony, na szczęście da się go kupić. Obecnie czekam na dostawę i napiszę jak poszła naprawa. Winą za ten stan rzeczy jest pechowe umieszczenie modułu, który jest narażony na wilgoć. W modelu e39 moduł występował w słupku.


Pobierz plik - link do postu

Wireless Components
ASK/FSK Single Conversion Receiver
TDA 5210 Version 3.0
Specification May 2001

Revision History
Current Version: 3.0 as of 18.05.01
Previous Version: 2.4, Dec. 2000
Page
(in previous
Version)

Page(s)
(in current
Version)

Subjects (major changes since last revision)

Product Info,
2-2

Product Info,
2-2

typ. supply current changed

3-12

3-12

Sec. 3.4.8: max. datarate changed, Sec. 3.4.9: max. output current changed

4-4

4-4

value of a changed to 1.414

4-8

4-8

FSK demodulator gain changed to 140µV/kHz

4-13

4-13

value for C2 changed to 22nF according to bill of materials, τ2 and T2 changed

5-3

5-3

min. supply current limits added, max. limits changed

5-4

5-4

supply current max. limit changed, min. limit added

5-5

5-5

NFLNA specification removed

5-6

5-6

3VOUT min. & max. limits changed, TAGC typ. & max. values changed, IFO:
NFmix and RF/IF isolation removed

5-7

5-7

Section “SLICER” reworked, max. datarate at given load capacitance quoted,
high output voltage limits changed, precharge current: min., max. limits
changed, PDO load and leakage currents limits and typ. values changed,

5-8

5-8

FSK demodulation gain min. limit changed

5-9

5-9

PDWN-current max. limit changed, supply currents min. limits added, max. limits changed, 3VOUT min. & max. limits changed, ITAGC_out limits changed

5-10

5-10

Section “SLICER” reworked, max. datarate at given load capacitance quoted,
high output voltage limits changed, precharge current: min., max. limits
changed, PDO output voltage removed

5-15

5-15

C18 value changed

ABM®, AOP®, ARCOFI®, ARCOFI®-BA, ARCOFI®-SP, DigiTape®, EPIC®-1, EPIC®-S, ELIC®, FALC®54, FALC®56, FALC®-E1, FALC®-LH, IDEC®, IOM®,
IOM®-1, IOM®-2, IPAT®-2, ISAC®-P, ISAC®-S, ISAC®-S TE, ISAC®-P TE, ITAC®, IWE®, MUSAC®-A, OCTAT®-P, QUAT®-S, SICAT®, SICOFI®, SICOFI®2, SICOFI®-4, SICOFI®-4µC, SLICOFI® are registered trademarks of Infineon Technologies AG.
ACE™, ASM™, ASP™, POTSWIRE™, QuadFALC™, SCOUT™ are trademarks of Infineon Technologies AG.

Edition 05.01
Published by Infineon Technologies AG,
Balanstraße 73,
81541 München
© Infineon Technologies AG May 2001.
All Rights Reserved.
Attention please!
As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies AG is an approved CECC manufacturer.
Packing
Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office. By agreement we will take packing
material back, if it is sorted. You must bear the costs of transport.
For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose!
Critical components1 of the Infineon Technologies AG, may only be used in life-support devices or systems2 with the express written approval of the
Infineon Technologies AG.
1 A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that lifesupport device or system, or to affect its safety or effectiveness of that device or system.
2 Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they
fail, it is reasonable to assume that the health of the user may be endangered.

TDA 5210
Product Info

Product Info
General Description

The IC is a very low power consump- Package
tion single chip FSK/ASK Superheterodyne Receiver (SHR) for the
frequency bands 810 to 870 MHz and
400 to 440 MHz that is pin compatible
with the ASK Receiver TDA5200. The
IC offers a high level of integration and
needs only a few external components. The device contains a low noise
amplifier (LNA), a double balanced
mixer, a fully integrated VCO, a PLL
synthesiser, a crystal oscillator, a limiter with RSSI generator, a PLL FSK
demodulator, a data filter, a data comparator (slicer) and a peak detector.
Additionally there is a power down feature to save battery life.
Low supply current (typ. at 868MHz
Is = 5.9mA in FSK mode,
Is = 5.2mA in ASK mode)
Supply voltage range 5V ±10%



Power down mode with very low
supply current (50nA typ)



FSK and ASK demodulation capability



Fully integrated VCO and PLL
Synthesiser



ASK sensitivity & lt; –107dBm




Application





Features



Selectable frequency ranges 810870 MHz and 400-440 MHz



Limiter with RSSI generation,
operating at 10.7MHz



Selectable reference frequency



2nd order low pass data filter with
external capacitors



Data slicer with self-adjusting
threshold



FSK sensitivity & lt; -100dBm

Keyless Entry Systems



Alarm Systems

Remote Control Systems



Low Bitrate Communication
Systems

Ordering Information
Type

Ordering Code

Package

TDA 5210

Q67037-A1100

P-TSSOP-28-1

samples available on tape and reel

Wireless Components

Product Info

Specification, May 2001

1

Table of Contents

1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i

2 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

2.1

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

2.2

Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

2.3

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

2.4

Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

3.1

Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

3.2

Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

3.3

Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

3.4

Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

3.4.1 Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

3.4.2 Mixer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

3.4.3 PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

3.4.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

3.4.5 Limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

3.4.6 FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

3.4.7 Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

3.4.8 Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

3.4.9 Peak Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

3.4.10 Bandgap Reference Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

4.1

Choice of LNA Threshold Voltage and Time Constant. . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

4.2

Data Filter Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

4.3

Quartz Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5

4.4

Quartz Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

4.5

Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

4.6

ASK/FSK Switch Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

4.6.1 FSK Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

4.6.2 ASK Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10

4.7

Principle of the Precharge Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

5 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

5.1

Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

5.1.2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

5.1.3 AC/DC Characteristics at TAMB = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

5.1.4 AC/DC Characteristics at TAMB = -40 to 105°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

5.2

Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

5.3

Test Board Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

5.4

Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

2

Product Description

Contents of this Chapter
2.1
2.2
2.3
2.4

Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

TDA 5210
Product Description

2.1 Overview
The IC is a very low power consumption single chip FSK/ASK Superheterodyne
Receiver (SHR) for the frequency bands 810 to 870 MHz and 400 to 440 MHz
that is pin compatible with the ASK Receiver TDA5200. The IC offers a high
level of integration and needs only a few external components. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated
VCO, a PLL synthesiser, a crystal oscillator, a limiter with RSSI generator, a
PLL FSK demodulator, a data filter, a data comparator (slicer) and a peak
detector. Additionally there is a power down feature to save battery life.

2.2 Application



Keyless Entry Systems



Remote Control Systems



Alarm Systems



Low Bitrate Communication Systems

2.3 Features





Supply voltage range 5V ±10%



Power down mode with very low supply current (50nA typ)



FSK and ASK demodulation capability



Fully integrated VCO and PLL Synthesiser



RF input sensitivity ASK & lt; –107dBm



RF input sensitivity FSK & lt; –100dBm



Selectable frequency ranges 810-870 MHz and 400-440 MHz



Selectable reference frequency



Limiter with RSSI generation, operating at 10.7MHz



2nd order low pass data filter with external capacitors



Wireless Components

Low supply current (at 868MHz Is = 5.9 mA typ. FSK mode, 5.2mA typ. ASK
mode)

Data slicer with self-adjusting threshold

2-2

Specification, May 2001

TDA 5210
Product Description

2.4 Package Outlines

P_TSSOP_28.EPS

Figure 2-1

Wireless Components

P-TSSOP-28-1 package outlines

2-3

Specification, May 2001

3

Functional Description

Contents of this Chapter
3.1
3.2
3.3
3.4

Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Pin Definition and Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

TDA 5210
Functional Description

3.1 Pin Configuration

CRST1

1

28

CRST2

VCC

2

27

PDW N

LNI

3

26

PDO

TAGC

4

25

DATA

AGND

5

24

3VO UT

LNO

6

23

THRES

VCC

7

22

FFB

MI

8

21

OPP

M IX

9

20

SLN

AGND

10

19

SLP

FSEL

11

18

L IM X

IF O

12

17

L IM

DGND

13

16

CSEL

VDD

14

15

M SEL

TDA 5210

Pin_Configuration_5210.wmf

Figure 3-1

Wireless Components

IC Pin Configuration

3-2

Specification, May 2001

TDA 5210
Functional Description

3.2 Pin Definition and Function
In the subsequent table the internal circuits connected to the pins of the device
are shown. ESD-protection circuits are omitted to ease reading.
.
Table 3-1 Pin Definition and Function
Pin No.

Symbol

1

Equivalent I/O-Schematic

Function

CRST1

External Crystal Connector 1

4 .1 5 V

1

50uA

2

VCC

5V Supply

3

LNI

LNA Input

57uA

3

500uA
4k

1k

Wireless Components

3-3

Specification, May 2001

TDA 5210
Functional Description

4

TAGC

AGC Time Constant Control
4.3 V

3 uA
4

1k

1 .4u A

1 .7V

5

AGND

Analogue Ground Return

6

LNO

LNA Output
5V

1k

6

7

VCC

8

5V Supply

MI

Mixer Input
1 .7 V

2k

9

2k

MIX

Complementary Mixer Input
8

9

4 0 0u A

10

AGND

Wireless Components

Analogue Ground Return

3-4

Specification, May 2001

TDA 5210
Functional Description

11

FSEL

868/434 MHz Operating Frequency Selector
7 50
1 .2 V

2k
11

12

IFO

10.7 MHz IF Mixer Output

300uA

2 .2 V

60
12

4 .5 k

13

DGND

Digital Ground Return

14

VDD

5V Supply (PLL Counter Circuitry)

15

MSEL

ASK/FSK Modulation Format
Selector

1.2V

3.6k
15

Wireless Components

3-5

Specification, May 2001

TDA 5210
Functional Description

16

CSEL

6.xx or 13.xx MHz Quartz
Selector
1 .2 V

8 0k
16

17

LIM

Limiter Input
2 .4 V

15k
17

18

Complementary Limiter Input

LIMX
75uA

330

18

15k

19

SLP

Data Slicer Positive Input

15u A

100

3k

19

8 0µA

Wireless Components

3-6

Specification, May 2001

TDA 5210
Functional Description

20

SLN

Data Slicer Negative Input

5uA

1 0k
20

21

OPP

OpAmp Noninverting Input

5u A

200
21

22

FFB

Data Filter Feedback Pin

5 uA

1 00k
22

23

THRES

AGC Threshold Input

5u A

10 k
23

24

3VOUT

3V Reference Output
24
2 0k
3 .1 V

Wireless Components

3-7

Specification, May 2001

TDA 5210
Functional Description

25

DATA

Data Output

500
25
40k

26

PDO

Peak Detector Output

200
26

27

PDWN

Power Down Input
27

220k

220k

28

CRST2

External Crystal Connector 2

4 .1 5 V

28

50uA

Wireless Components

3-8

Specification, May 2001

TDA 5210
Functional Description

3.3 Functional Block Diagram

VCC

IF
Filter
MSEL
LNO

MI
6

3

9

12

LIMX
17

FFB

18

15

20

-

FSK
PLL Demod

+ FSK
- ASK
+

SLICER
+

OP

25

DATA

PEAK
26 PDO
DETECTOR

:1/2

DGND

SLN
19

4

TDA 5210

OTA

VCC

SLP
21

LNA

LIMITER

TAGC

OPP
22

-

LNI

8

LIM

IFO

+

RF

MIX

VCO

: 128 / 64

Φ
DET

23

UREF

CRYSTAL
OSC

AGC
Reference

THRES

24

3VOUT

14
Bandgap
Reference

Loop
Filter

13
2,7

5,10

VCC AGND

11

FSEL

16

1

28

27

PDWN

CSEL
Crystal

Function_5200.wmf

Figure 3-2

Main Block Diagram

3.4 Functional Blocks
3.4.1

Low Noise Amplifier (LNA)
The LNA is an on-chip cascode amplifier with a voltage gain of 15 to 20dB. The
gain figure is determined by the external matching networks situated ahead of
LNA and between the LNA output LNO (Pin 6) and the Mixer Inputs MI and MIX
(Pins 8 and 9). The noise figure of the LNA is approximately 3dB, the current
consumption is 500µA. The gain can be reduced by approximately 18dB. The
switching point of this AGC action can be determined externally by applying a
threshold voltage at the THRES pin (Pin 23). This voltage is compared internally
with the received signal (RSSI) level generated by the limiter circuitry. In case
that the RSSI level is higher than the threshold voltage the LNA gain is reduced
and vice versa. The threshold voltage can be generated by attaching a voltage
divider between the 3VOUT pin (Pin 24) which provides a temperature stable
3V output generated from the internal bandgap voltage and the THRES pin as
described in Section 4.1. The time constant of the AGC action can be deter-

Wireless Components

3-9

Specification, May 2001

TDA 5210
Functional Description

mined by connecting a capacitor to the TAGC pin (Pin 4) and should be chosen
along with the appropriate threshold voltage according to the intended operating case and interference scenario to be expected during operation. The optimum choice of AGC time constant and the threshold voltage is described in
Section 4.1.

3.4.2

Mixer
The Double Balanced Mixer downconverts the input frequency (RF) in the
range of 400-440MHz/810-870MHz to the intermediate frequency (IF) at
10.7MHz with a voltage gain of approximately 21dB by utilising either high- or
low-side injection of the local oscillator signal. In case the mixer is interfaced
only single-ended, the unused mixer input has to be tied to ground via a capacitor. The mixer is followed by a low pass filter with a corner frequency of 20MHz
in order to suppress RF signals to appear at the IF output (IFO pin). The IF output is internally consisting of an emitter follower that has a source impedance
of approximately 330 Ω to facilitate interfacing the pin directly to a standard
10.7MHz ceramic filter without additional matching circuitry.

3.4.3

PLL Synthesizer
The Phase Locked Loop synthesiser consists of a VCO, an asynchronous
divider chain, a phase detector with charge pump and a loop filter and is fully
implemented on-chip. The VCO is including on-chip spiral inductors and varactor diodes. It’s nominal centre frequency is 840MHz, the operating range guaranteed over the temperature range specified is 820 to 860MHz. Depending on
whether high- or low-side injection of the local oscillator is used the receive frequency ranges are 810 to 840 and 840 to 870MHz or 400 to 420 and 420 to
440MHz (see also Section 4.4). No additional external components are necessary.
The oscillator signal is fed both to the synthesiser divider chain and to the downconverting mixer. In case of operation in the 400 to 440 MHz range, the signal
is divided by two before it is fed to the mixer. This is controlled by the selection
pin FSEL (Pin 11) as described in the following table. The overall division ratio
of the divider chain can be selected to be either 128 or 64, depending on the
frequency of the reference oscillator quartz (see below and Section 4.4). The
loop filter is also realised fully on-chip.

Table 3-2 FSEL Pin Operating States
FSEL
Open

400-440 MHz

Shorted to ground

Wireless Components

RF Frequency

810-870 MHz

3 - 10

Specification, May 2001

TDA 5210
Functional Description

3.4.4

Crystal Oscillator
The on-chip crystal oscillator circuitry allows for utilisation of quartzes both in
the 6 and 13MHz range as the overall division ratio of the PLL can be switched
between 64 and 128 via the CSEL (Pin 16) pin according to the following table.

Table 3-3 CSEL Pin Operating States
CSEL

Crystal Frequency

Open

6.xx MHz

Shorted to ground

13.xx MHz

The calculation of the value of the necessary quartz load capacitance is shown
in Section 4.3, the quartz frequency calculation is explained in Section 4.4.

3.4.5

Limiter
The Limiter is an AC coupled multistage amplifier with a cumulative gain of
approximately 80 dB that has a bandpass-characteristic centred around
10.7 MHz. It has a typical input impedance of 330 Ω to allow for easy interfacing
to a 10.7 MHz ceramic IF filter. The limiter circuit also acts as a Receive Signal
Strength Indicator (RSSI) generator which produces a DC voltage that is
directly proportional to the input signal level as can be seen in Figure 4-2. This
signal is used to demodulate ASK-modulated receive signals in the subsequent
baseband circuitry. The RSSI output is applied to the modulation format switch,
to the Peak Detector input and to the AGC circuitry.
In order to demodulate ASK signals the MSEL pin has to be left open as
described in the next chapter.

3.4.6

FSK Demodulator
To demodulate frequency shift keyed (FSK) signals a PLL circuit is used that is
contained fully on chip. The Limiter output differential signal is fed to the linear
phase detector as is the output of the 10.7 MHz center frequency VCO. The
demodulator gain is typically 140µV/kHz. The passive loop filter output that is
comprised fully on chip is fed to both the VCO and the modulation format switch
described in more detail below. This signal is representing the demodulated signal with high frequencies applied to the demodulator demodulated to logic ones
and low frequencies demodulated to logic zeroes. Please note that due to this
behaviour a sign inversion of the data occurs in case of high-side injection of
the local oscillator at receive frequencies below 840 or 420MHz, respectively.
See also .
The modulation format switch is actually a switchable amplifier with an AC gain
of 11 that is controlled by the MSEL pin (Pin 15) as shown in the following table.
This gain was chosen to facilitate detection in the subsequent circuits. The DC

Wireless Components

3 - 11

Specification, May 2001

TDA 5210
Functional Description

gain is 1 in order not to saturate the subsequent Data Filter wih the DC offset
produced by the demodulator in case of large frequency offsets of the IF signal.
The resulting frequency characteristic and details on the principle of operation
of the switch are described in Section 4.6.

Table 3-4 MSEL Pin Operating States
MSEL

Modulation Format

Open

ASK

Shorted to ground

FSK

The demodulator circuit is switched off in case of reception of ASK signals.

3.4.7

Data Filter
The data filter comprises an OP-Amp with a bandwidth of 100kHz used as a
voltage follower and two 100kΩ on-chip resistors. Along with two external
capacitors a 2nd order Sallen-Key low pass filter is formed. The selection of the
capacitor values is described in Section 4.2.

3.4.8

Data Slicer
The data slicer is a fast comparator with a bandwidth of 100 kHz. This allows
for a maximum receive data rate of up to 100kBaud. The maximum achievable
data rate also depends on the IF Filter bandwidth and the local oscillator tolerance values. Both inputs are accessible. The output delivers a digital data signal (CMOS-like levels) for sbsequent circuits. The self-adjusting threshold on
pin 20 its generated by RC-term or peak detector depending on the baseband
coding scheme. The data slicer threshold generation alternatives are described
in more detail in Section 4.5.

3.4.9

Peak Detector
The peak detector generates a DC voltage which is proportional to the peak
value of the receive data signal. An external RC network is necessary. The input
is connected to the output of the RSSI-output of the Limiter, the output is connected to the PDO pin (Pin 26 ). This output can be used as an indicator for the
received signal strength to use in wake-up circuits and as a reference for the
data slicer in ASK mode. The maximum output current is typically 950µA, the
discharge current is lower than 2µA. Note that the RSSI level is also output in
case of FSK mode.

Wireless Components

3 - 12

Specification, May 2001

TDA 5210
Functional Description

3.4.10

Bandgap Reference Circuitry
A Bandgap Reference Circuit provides a temperature stable reference voltage
for the device. A power down mode is available to switch off all subcircuits which
is controlled by the PWDN pin (Pin 27) as shown in the following table. The supply current drawn in this case is typically 50nA.
Table 3-5 PDWN Pin Operating States
PDWN

Operating State

Open or tied to ground

Powerdown Mode
Receiver On

Tied to Vs

Wireless Components

3 - 13

Specification, May 2001

4

Applications

Contents of this Chapter
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Choice of LNA Threshold Voltage and Time Constant . . . . . . . . . . . . 4-2
Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Quartz Load Capacitance Calculation . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Quartz Frequency Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Data Slicer Threshold Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
ASK/FSK Switch Functional Description . . . . . . . . . . . . . . . . . . . . . . 4-8
Principle of the Precharge Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

TDA 5210
Applications

4.1 Choice of LNA Threshold Voltage and Time Constant
In the following figure the internal circuitry of the LNA automatic gain control is
shown.

R1

R2

Uth re s h old
Pins:

23

24

RSSI (0.8 - 2.8V)

20kΩ

OTA

VCC

+3.1 V

Ilo a d

Gain control
voltage

RSSI & gt; Uth r es h o ld : Ilo a d =4.2µA
RSSI & lt; Uth r es h o ld : Ilo a d = -1.5µA
4
UC
C

LNA

Uc : & lt; 2.6V : Gain high
Uc : & gt; 2.6V : Gain low
Uc ma x = VC C - 0.7V
Uc min = 1.67V

LNA_autom.wmf

Figure 4-1

LNA Automatic Gain Control Circuitry

The LNA automatic gain control circuitry consists of an operational transimpedance amplifier that is used to compare the received signal strength signal
(RSSI) generated by the Limiter with an externally provided threshold voltage
Uthres. As shown in the following figure the threshold voltage can have any
value between approximately 0.8 and 2.8V to provide a switching point within
the receive signal dynamic range.
This voltage Uthres is applied to the THRES pin (Pin 23) The threshold voltage
can be generated by attaching a voltage divider between the 3VOUT pin
(Pin 24) which provides a temperature stable 3V output generated from the
internal bandgap voltage and the THRES pin. If the RSSI level generated by the
Limiter is higher than Uthres, the OTA generates a positive current Iload. This
yields a voltage rise on the TAGC pin (Pin 4). Otherwise, the OTA generates a
negative current. These currents do not have the same values in order to
achieve a fast-attack and slow-release action of the AGC and are used to
charge an external capacitor which finally generates the LNA gain control voltage.

Wireless Components

4-2

Specification, May 2001

TDA 5210
Applications

LNA always
in high gain mode

3

2

RSSI Level Range

UTHRES Voltage Range

2.5

RSSI Level
1.5

1

LNA always
in low gain mode

0.5

0
-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

Input Level at LNA Input [dBm]

RSSI-AGC.wmf

Figure 4-2

RSSI Level and Permissive AGC Threshold Levels

The switching point should be chosen according to the intended operating scenario. The determination of the optimum point is described in the accompanying
Application Note, a threshold voltage level of 1.8V is apparently a viable choice.
It should be noted that the output of the 3VOUT pin is capable of driving up to
50µA, but that the THRES pin input current is only in the region of 40nA. As the
current drawn out of the 3VOUT pin is directly related to the receiver power consumption, the power divider resistors should have high impedance values. The
sum of R1 and R2 has to be 600kΩ in order to yield 3V at the 3VOUT pin. R1
can thus be chosen as 240kΩ, R2 as 360kΩ to yield an overall 3VOUT output
current of 5µA1 and a threshold voltage of 1.8V
Note: If the LNA gain shall be kept in either high or low gain mode this has to
be accomplished by tying the THRES pin to a fixed voltage. In order to achieve
high gain mode operation, a voltage higher than 2.8V shall be applied to the
THRES pin, such as a short to the 3VOLT pin. In order to achieve low gain
mode operation a voltage lower than 0.7V shall be applied to the THRES, such
as a short to ground.
As stated above the capacitor connected to the TAGC pin is generating the gain
control voltage of the LNA due to the charging and discharging currents of the
OTA and thus is also responsible for the AGC time constant. As the charging
and discharging currents are not equal two different time constants will result.
The time constant corresponding to the charging process of the capacitor shall
be chosen according to the data rate. According to measurements performed
at Infineon the capacitor value should be greater than 47nF.

1. note the 20kΩ resistor in series with the 3.1V internal voltage source

Wireless Components

4-3

Specification, May 2001

TDA 5210
Applications

4.2 Data Filter Design
Utilising the on-board voltage follower and the two 100kΩ on-chip resistors a
2nd order Sallen-Key low pass data filter can be constructed by adding 2 external capacitors between pins 19 (SLP) and 22 (FFB) and to pin 21 (OPP) as
depicted in the following figure and described in the following formulas1.

C1

Pins:

C2

22

21

R
100k

19

R
100k

Filter_Design.wmf

Figure 4-3

Data Filter Design

(1)(2)

b C2 = -------------------------4QRΠf 3dB

2Q b
C 1 = ---------------------R2Πf 3dB
with

b
Q = -----a

(3)the quality factor of the poles

where
in case of a Bessel filter a = 1.3617, b = 0.618
and thus Q = 0.577

and in case of a Butterworth filter a = 1.414, b = 1
and thus Q = 0.71

Example: Butterworth filter with f3dB = 5kHz and R = 100kΩ:
C1 = 450pF, C2 = 225pF

1. taken from Tietze/Schenk: Halbleiterschaltungstechnik, Springer Berlin, 1999

Wireless Components

4-4

Specification, May 2001

TDA 5210
Applications

4.3 Quartz Load Capacitance Calculation
The value of the capacitor necessary to achieve that the quartz oscillator is
operating at the intended frequency is determined by the reactive part of the
negative resistance of the oscillator circuit as shown in Section 5.1.3 and by the
quartz specifications given by the quartz manufacturer.

CS
Pin 28
Crystal

Input
impedance
Z1-28

TDA5210
Pin 1

Quartz_load.wmf

Figure 4-4

Determination of Series Capacitance Value for the Quartz Oscillator

Crystal specified with load capacitance

CS =

1
1
+ 2π f X L
Cl

with Cl the load capacitance (refer to the quartz crystal specification).
Examples:
6.7 MHz: CL = 12 pFXL=695ΩCS = 8.9 pF
13.4 MHz: CL = 12 pFXL=1010 ΩCS = 5.9 pF
These values may be obtained in high accuracy by putting two capacitors in
series to the quartz, such as 22pF and 15pF in the 6.7MHz case and 22pF and
8.2pF in the 13.4MHz case.

Wireless Components

4-5

Specification, May 2001

TDA 5210
Applications

4.4 Quartz Frequency Calculation
As described in Section 3.4.3 the operating range of the on-chip VCO is 820 to
860 MHz with a nominal center frequency of 840MHz. This signal is divided by
2 before applied to the mixer in case of operation at 434 MHz. This local oscillator signal can be used to downconvert the RF signals both with high- or lowside injection at the mixer. The resulting receive frequency ranges then extend
between 810 and 870MHz or between 400 and 440MHz. Low-side injection of
the local oscillator has to be used for receive frequencies between 840 and
870MHz as well as high-side injection for receive frequencies below 840MHz.
Corresponding to that in the 400MHz region low-side injection is applicable for
receive frequencies above 420MHz, high-side injection below this frequency.
Therefore for operation both in the 868 and the 434 MHz ISM bands low-side
injection of the local oscillator has to be used. Then the local oscillator frequency is calculated by subtracting the IF frequency (10.7 MHz) from the RF
frequency (434 or 868 MHz). Please note that no sign-inversion occurs in case
of reception and demodulation of FSK-modulated signals.
The overall division ratios in the PLL are 64 or 128 in case of operation at
868 MHz or 32 and 64 in case of operation at 434 MHz, depending on the crystal frequency used as shown below. The quartz frequency in case of low-side
injection may be calculated by using the following formula:
ƒQU = (ƒRF - 10.7) / r
with

ƒRF

receive frequency

ƒLO

local oscillator (PLL) frequency (ƒRF - 10.7)

ƒQU

quartz oscillator frequency

r

ratio of local oscillator (PLL) frequency and quartz frequency as
shown in the subsequent table

Table 4-1 Dependence of PLL Overall Division Ratio on FSEL and CSEL
FSEL

CSEL

Ratio r = (fLO/fQU)

open

open

64

open

GND

32

GND

open

128

GND

GND

64

:

f QU = (868.4MHz − 10.7 MHz ) / 64 = 13.40156 MHz
f QU = (868 .4 MHz − 10.7 MHz ) / 128 = 6.7008 MHz
f QU = (434.2 MHz − 10.7 MHz ) / 32 = 13.23437 MHz
f QU = (434 .2 MHz − 10.7 MHz ) / 64 = 6.6172 MHz
Wireless Components

4-6

Specification, May 2001

TDA 5210
Applications

4.5 Data Slicer Threshold Generation
The threshold of the data slicer can be generated using an external R-C integrator as shown in Figure 4-5. The cut-off frequency of the R-C integrator has
to be lower than the lowest frequency appearing in the data signal. In order to
keep distortion low, the minimum value for R is 20kΩ.

R
C

Pins:

19

data out
25

20
Uthreshold

data
filter
data slicer

Data_slice1.wmf

Figure 4-5

Data Slicer Threshold Generation with External R-C Integrator

In case of ASK operation another possibility for threshold generation is to use
the peak detector in connection with two resistors and one capacitor as shown
in the following figure. The component values are depending on the coding
scheme and the protocol used.

R
C
R

Pins:
peak detector

26

19

data out
25

20
Uthreshold

data slicer

data
filter

Data_slice2.wmf

Figure 4-6

Wireless Components

Data Slicer Threshold Generation Utilising the Peak Detector

4-7

Specification, May 2001

TDA 5210
Applications

4.6 ASK/FSK Switch Functional Description
The TDA5210 is containing an ASK/FSK switch which can be controlled via
Pin 15 (MSEL). This switch is actually consisting of 2 operational amplifiers that
are having a gain of 1 in case of the ASK amplifier and a gain of 11 in case of
the FSK amplifier in order to achieve an appropriate demodulation gain characteristic. In order to compensate for the DC-offset generated especially in case
of the FSK PLL demodulator there is a feedback connection between the
threshold voltage of the bit slicer comparator (Pin 20) to the negative input of
the FSK switch amplifier. This is shown in the following figure.

15

MSEL

RSSI (ASK signal)
ASK/FSK Switch
Data Filter
FSK PLL Demodulator

R1=100k

+ ASK

+

v=1

+ FSK
-

-

Comp

25

AC

0.18 mV/kHz

DATA Out

R2=100k

R3=300k
DC

typ. 2 V
1.5 V......2.5 V

R4=30k
ASK mode : v=1
FSK mode : v=11

FFB 22

21

C2

OPP

C1

SLP

19

20

SLN

R
C

ask_fsk_datapath.WMF

Figure 4-7

4.6.1

ASK/FSK mode datapath

FSK Mode
The FSK datapath has a bandpass characterisitc due to the feedback shown
above (highpass) and the data filter (lowpass). The lower cutoff frequency f2 is
determined by the external RC-combination. The upper cutoff frequency f3 is
determined by the data filter bandwidth.
The demodulation gain of the FSK PLL demodulator is 140µV/kHz. This gain is
increased by the gain v of the FSK switch, which is 11. Therefore the resulting
dynamic gain of this circuit is 2mV/kHz within the bandpass. The gain for the DC
content of FSK signal remains at 140µV/kHz. The cutoff frequencies of the
bandpass have to be chosen such that the spectrum of the data signal is influenced in an acceptable amount.
In case that the user data is containing long sequences of logical zeroes the
effect of the drift-off of the bit slicer threshold voltage can be lowered if the offset
voltage inherent at the negative input of the slicer comparator (Pin20) is used.
The comparator has no hysteresis built in.

Wireless Components

4-8

Specification, May 2001

TDA 5210
Applications

This offset voltage is generated by the bias current of the negative input of the
comparator (i.e. 20nA) running over the external resistor R. This voltage raises
the voltage appearing at pin 20 (e.g. 1mV with R = 100kΩ). In order to obtain
benefit of this asymmetrical offset for the demodulation of long zeros the lower
of the two FSK frequencies should be chosen in the transmitter as the zerosymbol frequency.
In the following figure the shape of the above mentioned bandpass is shown.

gain (pin19)

v
v
-3dB

20dB/dec

-40dB/dec

3dB
0dB

f

DC

f1

f2

0.18m Hz
V/k

f3

2m Hz
V/k

frequenzgang.WMF

Figure 4-8

Frequency characterstic in case of FSK mode

The cutoff frequencies are calculated with the following formulas:

f1 =

1
R ⋅ 330kΩ
⋅C

R + 330kΩ

f 2 = v ⋅ f1 = 11 ⋅ f1

f 3 = f 3dB
f3 is the 3dB cutoff frequency of the data filter - see Section 4.2.
Example:
R = 100kΩ, C = 47nF
This leads tof1 = 44Hzandf2 = 485Hz

Wireless Components

4-9

Specification, May 2001

TDA 5210
Applications

4.6.2

ASK Mode
In case the receiver is operated in ASK mode the datapath frequency charactersitic is dominated by the data filter alone, thus it is lowpass shaped.The cutoff
frequency is determined by the external capacitors C12 and C14 and the internal 100k resistors as described in Section 4.2

0dB
-3dB

-40dB/dec

f
f3dB

freq_ask.WMF

Figure 4-9

Wireless Components

Frequency charcteristic in case of ASK mode

4 - 10

Specification, May 2001

TDA 5210
Applications

4.7 Principle of the Precharge Circuit
In case the data slicer threshold shall be generated with an external RC network
as described in Section 4.5 it is necessary to use large values for the capacitor
C attached to the SLN pin (pin 20) in order to achieve long time constants. This
results also from the fact that the choice of the value for R connected between
the SLP and SLN pins (pins 19 and 20) is limited by the 330kΩ resistor appearing in parallel to R as can be seen in Figure 4-7. Apart from this a resistor value
of 100kΩ leads to a voltage offset of 1mv at the comparator input as described
in Section 4.6.1. The resulting startup time constant τ1 can be calculated with:

τ1 = (R // 330kΩ) · C
In case R is chosen to be 100kΩ and C is chosen as 47nF this leads to

τ1 = (100kΩ // 330kΩ) · 47nF = 77kΩ · 47nF = 3.6ms
When the device is turned on this time constant dominates the time necessary
for the device to be able to demodulate data properly. In the powerdown mode
the capacitor is only discharged by leakage currents.
In order to reduce the turn-on time in the presence of large values of C a precharge circuit was included in the TDA5210 as shown in the following figure.

C2

R1+R2=600k
R1
R2
C
R
Uth r es h o ld
24

20

23
Uc & gt; Us

Uc & lt; Us

19
Uc

I load

Data Filter

ASK/FSK Switch

-

U2
0 / 240uA

+
Us

OTA

+

-

U2 & lt; 2.4V : I=240uA
U2 & gt; 2.4V : I=0

20k
+3.1V

+2.4V

precharge.WMF

Figure 4-10

Wireless Components

Principle of the precharge circuit

4 - 11

Specification, May 2001

TDA 5210
Applications

This circuit charges the capacitor C with an inrush current Iload of typically
220µA for a duration of T2 until the voltage Uc appearing on the capacitor is
equal to the voltage Us at the input of the data filter. This voltage is limited to
2.5V. As soon as these voltages are equal or the duration T2 is exceeded the
precharge circuit is disabled.

τ2 is the time constant of the charging process of C which can be calculated as
τ2 ≈ 20kΩ · C2
as the sum of R1 and R2 is sufficiently large and thus can be neglected. T2 can
then be calculated according to the following formula:
§
¨
1
T 2 = τ 2 ln ¨
¨ 1 − 2 . 4V
¨
3V
©

·
¸
¸ ≈ τ 2 ⋅1 . 6
¸
¸
¹

The voltage transient during the charging of C2 is shown in the following figure:

U2

3V
2.4V

2

T2
e-fkt1.WMF

Figure 4-11

Voltage appearing on C2 during precharging process

The voltage appearing on the capacitor C connected to pin 20 is shown in the
following figure. It can be seen that due to the fact that it is charged by a constant current source it exhibits is a linear increase in voltage which is limited to
USmax = 2.5V which is also the approximate operating point of the data filter
input. The time constant appearing in this case can be denoted as T3, which
can be calculated with

USmax ⋅ C
2.5V T3 = ----------------------- = ---------------- ⋅ C
220µA
220µA

Wireless Components

4 - 12

Specification, May 2001

TDA 5210
Applications

Uc

Us

T3
e-Fkt2.WMF

Figure 4-12

Voltage transient on capacitor C attached to pin 20

As an example the choice of C2 = 22nF and C = 47nF yields

τ2 = 0.44ms
T2 = 0.71ms
T3 = 0.53ms
This means that in this case the inrush current could flow for a duration of
0.64ms but stops already after 0.49ms when the USmax limit has been reached.
T3 should always be chosen to be shorter than T2.
It has to be noted finally that during the turn-on duration T2 the overall device
power consumption is increased by the 220µA needed to charge C.
The precharge circuit may be disabled if C2 is not equipped. This yields a T2
close to zero. Note that the sum of R4 and R5 has to be 600kΩ in order to produce 3V at the THRES pin as this voltage is internally used also as the reference for the FSK demodulator.

Wireless Components

4 - 13

Specification, May 2001

5

Reference

Contents of this Chapter
5.1
5.2
5.3
5.4

Electrical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12
Test Board Layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15

TDA 5210
preliminary

Reference

5.1 Electrical Data

5.1.1

Absolute Maximum Ratings

WARNING
The maximum ratings may not be exceeded under any circumstances, not even
momentarily and individually, as permanent damage to the IC will result.

Table 5-1 Absolute Maximum Ratings, Ambient temperature TAMB=-40°C ... + 105°C
#

Parameter

Symbol

Limit Values
min

Unit

Remarks

max

1

Supply Voltage

Vs

-0.3

5.5

V

2

Junction Temperature

Tj

-40

+150

°C

3

Storage Temperature

Ts

-40

+125

°C

4

Thermal Resistance

RthJA

114

K/W

5

ESD integrity, all pins excl. Pins 1,3, 6, 28
ESD integrity Pins 1,3,6,28

VESD

+2
+1.5

kV
kV

Wireless Components

5-2

HBM
according to
MIL STD
883D,
method
3015.7

Specification, May 2001

TDA 5210
preliminary

Reference

5.1.2

Operating Range
Within the operational range the IC operates as explained in the circuit description. The AC/DC characteristic limits are not guaranteed. Currents flowing into
the device are denoted as positive currents and v.v.

Supply voltage: VCC = 4.5V .. 5.5V

Table 5-2 Operating Range, Ambient temperature TAMB= -40°C ... + 105°C
#

Parameter

Symbol

Limit Values

Unit

Test Conditions

fRF = 868MHz, FSK Mode
fRF = 434MHz, FSK Mode
fRF = 868MHz, ASK Mode
fRF = 434MHz, ASK Mode

min
1

Supply Current

2

Receiver Input Level
ASK
FSK, frequ. dev. ± 50kHz

4.1
3.9
3.4
3.2

7.7
7.5
7
6.8

mA
mA
mA
mA

RFin

-106
-100

-13
-13

dBm
dBm

Item

max

ISF 868
ISF 434
ISA 868
ISA 434

L

3

LNI Input Frequency

fRF

400/
810

440/
870

MI/X Input Frequency

fMI

400/
810

440/
870

MHz

5

3dB IF Frequency Range
ASK
FSK

fIF -3dB

5
10.4

23
11

MHz



MHz

4

@ source impedance 50Ω,
BER 2E-3, average power
level, Manchester encoded
datarate 4kBit, 280kHz IF
Bandwidth

6

Powerdown Mode On

PWDNON

0

0.8

V

7

Powerdown Mode Off

PWDNOFF

2

VS

V

8

Gain Control Voltage,
LNA high gain state

VTHRES

2.8

VS

V

9

Gain Control Voltage,
LNA low gain state

VTHRES

0

0.7



V

■ This value is guaranteed by design.

Wireless Components

5-3

Specification, May 2001

TDA 5210
preliminary

Reference

5.1.3

AC/DC Characteristics at TAMB = 25°C
AC/DC characteristics involve the spread of values guaranteed within the specified voltage and ambient temperature range. Typical characteristics are the
median of the production. Currents flowing into the device are denoted as positive currents and vice versa.

Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V
Parameter

Symbol

Limit Values
min

Unit

Test Conditions

typ

100

nA

Item

max

50

L

Pin 27 (PDWN)
open or tied to 0 V

Supply
Supply Current
1

Supply current,
standby mode

IS PDWN

2

Supply current, device
operating in 868 MHz
range, FSK mode

ISF 868

5.1

5.9

6.7

mA

Pin 11 (FSEL) tied
to GND, Pin 15
(MSEL) tied to GND

3

Supply current, device
operating in 434 MHz
range, FSK mode

ISF 434

4.9

5.7

6.5

mA

Pin 11 (FSEL)
open, Pin 15
(MSEL) tied to GND

4

Supply current, device
operating in 868 MHz
range, ASK mode

ISA 868

4.4

5.2

6

mA

Pin 11 (FSEL) tied
to GND, Pin 15
(MSEL) open

5

Supply current, device
operating in 434 MHz
range, ASK mode

ISA 434

4.2

5

5.8

mA

Pin 11 (FSEL)
open, Pin 15
(MSEL) open

dBm

Manchester
encoded datarate
4kBit, 280kHz IF
Bandwidth

LNA
Signal Input LNI (PIN 3), VTHRES & gt; 2.8V, high gain mode
1

2

Average Power Level
at BER = 2E-3
(Sensitivity) ASK

RFin

-110

Average Power Level
at BER = 2E-3
(Sensitivity) FSK

RFin

-103

dBm

Manchester enc.
datarate 4kBit,
280kHz IF Bandw.,
± 50kHz pk. dev.





3

Input impedance,
fRF=434 MHz

S11 LNA

0.873 / -34.7 deg



4

Input impedance,
fRF=869 MHz

S11 LNA

0.738 / -73.5 deg



5

Input level @ 1dB compression

P1dBLNA

-15

dBm

6

Input 3rd order intercept
point fRF=434 MHz

IIP3LNA

-10

dBm

matched input



7

Input 3rd order intercept
point fRF=869 MHz

IIP3LNA

-14

dBm

matched input



Wireless Components

5-4



Specification, May 2001

TDA 5210
preliminary

Reference

Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)
Parameter

Symbol

Limit Values
min

8

LO signal feedthrough
at antenna port

typ

LOLNI

Unit

Test Conditions

L

Item

max
-73



dBm

Signal Output LNO (PIN 6), VTHRES & gt; 2.8V, high gain mode
1

Gain fRF=434 MHz

S21 LNA

1.509 / 138.2 deg



2

Gain fRF=869 MHz

S21 LNA

1.419 / 101.7 deg



3

Output impedance,
fRF=434 MHz

S22 LNA

0.886 / -12.9 deg



4

Output impedance,
fRF=869 MHz

S22 LNA

0.866 / -24.2 deg



5

Voltage Gain Antenna
to IFO fRF=434 MHz

GAntMI

42

dB

6

Voltage Gain Antenna
to IFO fRF=869 MHz

GAntMI

40

dB

Signal Input LNI, VTHRES = GND, low gain mode
1

Input impedance,
fRF=434 MHz

S11 LNA

0.873 / -34.7 deg



2

Input impedance,
fRF=869 MHz

S11 LNA

0.738 / -73.5 deg



3

Input level @ 1dB C. P
fRF = 434 MHz

P1dBLNA

-18

dBm

matched input



4

Input level @ 1dB C. P
fRF = 869 MHz

P1dBLNA

-6

dBm

matched input



5

Input 3rd order intercept
point fRF=434 MHz

IIP3LNA

-10

dBm

matched input



6

Input 3rd order intercept
point fRF=869 MHz

IIP3LNA

-5

dBm

matched input



Signal Output LNO, VTHRES = GND, low gain mode
1

Gain fRF=434 MHz

S21 LNA

0.183 / 140.6 deg



2

Gain fRF=869 MHz

S21 LNA

0.179 / 109.1deg



3

Output impedance,
fRF=434 MHz

S22 LNA

0.897 / -13.6 deg



4

Output impedance,
fRF=869 MHz

S22 LNA

0.868 / -26.3 deg



5

Voltage Gain Antenna
to MI fRF=434 MHz

GAntMI

22

dB

6

Voltage Gain Antenna
to MI fRF=869 MHz

GAntMI

19

dB

Wireless Components

5-5

Specification, May 2001

TDA 5210
preliminary

Reference

Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)
Parameter

Symbol

Limit Values

Unit

min

typ

Test Conditions

L

Item

max

Signal 3VOUT (PIN 24)
1

Output voltage

V3VOUT

2.9

3.1

3.3

V

3VOUT Pin open

2

Current out

I3VOUT

-3

-5

-10

µA

see Section 4.1

VS-1V

V

see Section 4.1

Signal THRES (PIN 23)
1

Input Voltage range

VTHRES

0

2

LNA low gain mode

VTHRES

0

3

LNA high gain mode

VTHRES

2.8

4

Current in

ITHRES_in

V
3

VS

5

V

or shorted to Pin 24

nA

Signal TAGC (PIN 4)
1

Current out,
LNA low gain state

ITAGC_out

-3.6

-4.2

-5

µA

RSSI & gt; VTHRES

2

Current in, LNA high
gain state

VTAGC_in

1

1.6

2.2

µA

RSSI & gt; VTHRES

MIXER
Signal Input MI/MIX (PINS 8/9)
1

Input impedance,
fRF=434 MHz

S11 MIX

0.942 / -14.4 deg



2

Input impedance,
fRF=869 MHz

S11 MIX

0.918 / -28.1 deg



3

Input 3rd order intercept
point fRF=434 MHz

IIP3MIX

-28

dBm



4

Input 3rd order intercept
point fRF=869 MHz

IIP3MIX

-26

dBm





Signal Output IFO (PIN 12)
1

Output impedance

ZIFO

330



2

Conversion Voltage
Gain fRF=434 MHz

GMIX

+19

dB

3

Conversion Voltage
Gain fRF=869 MHz

GMIX

+18

dB

LIMITER
Signal Input LIM/X (PINS 17/18)
1

Input Impedance

ZLIM

264

2

RSSI dynamic range

DRRSSI

60

3

RSSI linearity

LINRSSI

4

Operating frequency
(3dB points)

Wireless Components

fLIM

330

396



80

dB

±1
5

10.7

5-6



dB
23



MHz



Specification, May 2001

TDA 5210
preliminary

Reference

Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)
Parameter

Symbol

Limit Values
min

typ

Unit

Test Conditions

L

Item

max

DATA FILTER
1

Useable bandwidth

2

RSSI Level at Data Filter Output SLP,
RFIN=-103dBm

RSSIlow

3

RSSI Level at Data Filter Output SLP,
RFIN=-30dBm

RSSIhigh

BWBB FILT



100

kHz

0.3

1

V

LNA in high gain
mode

1.8

3

V

LNA in high gain
mode

100

kBps

0.1

V

Slicer, Signal Output DATA (PIN 25)
1

Maximum Datarate

DRmax

2

LOW output voltage

VSLIC_L

0

3

HIGH output voltage

VSLIC_H

VS1.3V

VS-1V

VS0.7V

IPCH_SLN

-100

-220

-300

µA

Iload

-600

-950

-1300

µA

Ileakage

0

200

1000

nA

14

MHz



V

NRZ, 20pF capacitive loading

Slicer, Signal Output DATA (PIN 20)
1

Precharge Current Out

see Section 4.7

PEAK DETECTOR
Signal Output PDO (PIN 26)
1

Load current

2

Leakage current

CRYSTAL OSCILLATOR
Signals CRSTL1, CRSTL 2, (PINS 1/28)
1

Operating frequency

2

Input Impedance
@ ~6MHz

Z1-28

-825
+j695





3

Input Impedance
@ ~13MHz

Z1-28

-600
+j1010





4

Serial Capacity
@ ~6MHz

CS 6=C1

8.9

pF

5

Serial Capacity
@ ~13MHz

CS13=C1

5.9

pF

fCRSTL

6

fundamental mode,
series resonance

ASK/FSK Signal Switch
Signal MSEL (PIN 15)
1

ASK Mode

VMSEL

1.4

4

V

2

FSK Mode

VMSEL

0

0.2

V

Wireless Components

5-7

or open

Specification, May 2001

TDA 5210
preliminary

Reference

Table 5-3 AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V (continued)
Parameter

Symbol

Limit Values

Unit

min

typ

Test Conditions

L

Item

max

FSK DEMODULATOR
1

Demodulation Gain

GFMDEM

85

140

225

µV/
kHz

2

Useable IF Bandwidth

BWIFPLL

10.2

10.7

11.2

MHz

POWER DOWN MODE
Signal PDWN (PIN 27)
1

Powerdown Mode On

PWDNON

0

0.8

V

2

Powerdown Mode Off

PWDNOff

2.8

VS

V

3

Input bias current
PDWN

4

Start-up Time until valid
signal is detected at IF

IPDWN

19

TSU

uA
1

Power On Mode

ms

VCO MULTIPLEXER
Signal FSEL (PIN 11)
1

fRF range 434 MHz

VFSEL

1.4

4

V

2

fRF range 869 MHz

VFSEL

0

0.2

V

3

Output bias current
FSEL

IFSEL

-160

-240

µA

FSEL tied to GND

or open

-200

or open

PLL DIVIDER
Signal CSEL (PIN 16)
1

fCRSTL range 6.xxMHz

VCSEL

1.4

4

V

2

fCRSTL range
13.xxMHz

VCSEL

0

0.2

V

3

Input bias current
CSEL

ICSEL

-3

-7

µA

-5

CSEL tied to GND

■ Measured only in lab.

Wireless Components

5-8

Specification, May 2001

TDA 5210
preliminary

Reference

5.1.4

AC/DC Characteristics at TAMB = -40 to 105°C
Currents flowing into the device are denoted as positive currents and vice versa

Table 5-4 AC/DC Characteristics with TAMB= -40°C ... + 105°C, VVCC = 4.5 ... 5.5 V
Parameter

Symbol

Limit Values
min

Unit

Test Conditions

typ

400

nA

Item

max

50

L

Pin 27 (PDWN)
open or tied to 0 V

Supply
Supply Current
1

Supply current,
standby mode

IS PDWN

2

Supply current, device
operating in 868 MHz
range, FSK mode

ISF 868

4.1

5.9

7.7

mA

Pin 11 (FSEL) tied
to GND, Pin 15
(MSEL) tied to GND

3

Supply current, device
operating in 434 MHz
range, FSK mode

ISF 434

3.9

5.7

7.5

mA

Pin 11 (FSEL)
open, Pin 15
(MSEL) tied to GND

4

Supply current, device
operating in 868 MHz
range, ASK mode

ISA 868

3.4

5.2

7

mA

Pin 11 (FSEL) tied
to GND, Pin 15
(MSEL) open

5

Supply current, device
operating in 434 MHz
range, ASK mode

ISA 434

3.2

5

6.8

mA

Pin 11 (FSEL)
open, Pin 15
(MSEL) open

Signal 3VOUT (PIN 24)
1

Output voltage

V3VOUT

2.9

3.1

3.3

V

3VOUT Pin open

2

Current out

I3VOUT

-3

-5

-10

µA

see Section 4.1

see Section 4.1

Signal THRES (PIN 23)
1

Input Voltage range

VTHRES

0

VS-1V

V

2

LNA low gain mode

VTHRES

0

0.3

V

3

LNA high gain mode

VTHRES

3

VS

V

4

Current in

ITHRES_in

5

or shorted to Pin 24

nA

Signal TAGC (PIN 4)
1

Current out,
LNA low gain state

ITAGC_out

-1

-4.2

-8

µA

RSSI & gt; VTHRES

2

Current in, LNA high
gain state

VTAGC_in

0.5

1.5

5

µA

RSSI & gt; VTHRES

MIXER
1

Conversion Voltage
Gain fRF=434 MHz

GMIX

+19

dB

2

Conversion Voltage
Gain fRF=869 MHz

GMIX

+18

dB

LIMITER
Signal Input LIM/X (PINS 17/18)
1

RSSI dynamic range

Wireless Components

DRRSSI

60

80

5-9

dB

Specification, May 2001

TDA 5210
preliminary

Reference

Table 5-4 AC/DC Characteristics with TAMB= -40°C ... + 105°C, VVCC = 4.5 ... 5.5 V
Parameter

Symbol

Limit Values
min

typ

Unit

Test Conditions

L

Item

max

DATA FILTER
2

RSSI Level at Data Filter Output SLP,
RFIN=-103dBm

RSSIlow

0.3

1

V

LNA in high gain
mode

3

RSSI Level at Data Filter Output SLP,
RFIN=-30dBm

RSSIhigh

1.8

3

V

LNA in high gain
mode

100

kBps

0.1

V

Slicer, Signal Output DATA (PIN 25)
1

Maximum Datarate

DRmax

2

LOW output voltage

VSLIC_L

0

3

HIGH output voltage

VSLIC_H

VS1.5V

VS-1V

VS0.5V

IPCH_SLN

-100

-220

-300

µA

Iload

-400

-850

-1400

µA

Ileakage

0

700

2000



V

nA

NRZ, 20pF capacitive loading

Slicer, Signal Output DATA (PIN 20)
1

Precharge Current Out

see Section 4.7

PEAK DETECTOR
Signal Output PDO (PIN 26)
1

Load current

2

Leakage current

CRYSTAL OSCILLATOR
Signals CRSTL1, CRSTL 2, (PINS 1/28)
1

Operating frequency

fCRSTL

6

14

MHz

fundamental mode,
series resonance

ASK/FSK Signal Switch
Signal MSEL (PIN 15)
1

ASK Mode

VMSEL

1.4

4

V

2

FSK Mode

VMSEL

0

0.2

V

or open

FSK DEMODULATOR
1

Demodulation Gain

GFMDEM

105

140

245

µV/
kHz

2

Useable IF Bandwidth

BWIFPLL

10.2

10.7

11.2

MHz

POWER DOWN MODE
Signal PDWN (PIN 27)
1

Powerdown Mode On

PWDNON

0

0.8

V

2

Powerdown Mode Off

PWDNOff

2.8

VS

V

3

Start-up Time until valid
signal is detected at IF

1

ms

Wireless Components

TSU

5 - 10

Specification, May 2001

TDA 5210
preliminary

Reference

Table 5-4 AC/DC Characteristics with TAMB= -40°C ... + 105°C, VVCC = 4.5 ... 5.5 V
Parameter

Symbol

Limit Values
min

typ

Unit

Test Conditions

L

Item

max

VCO MULTIPLEXER
Signal FSEL (PIN 11)
1

fRF range 434 MHz

VFSEL

1.4

4

V

2

fRF range 869 MHz

VFSEL

0

0.2

V

3

Output bias current
FSEL

IFSEL

-110

-340

µA

FSEL tied to GND

or open

-200

or open

PLL DIVIDER
Signal CSEL (PIN 16)
1

fCRSTL range 6.xxMHz

VCSEL

1.4

4

V

2

fCRSTL range
13.xxMHz

VCSEL

0

0.2

V

3

Input bias current
CSEL

ICSEL

-3

-7

µA

Wireless Components

-5

5 - 11

CSEL tied to GND

Specification, May 2001

TDA 5210
preliminary

Reference

5.2 Test Circuit
The device performance parameters marked with ■ in Section 5.1.3 were measured on an Infineon evaluation board. This evaluation board can be obtained
together with evaluation boards of the accompanying transmitter device
TDA5100 in an evaluation kit that may be ordered on the INFINEON RKE
Webpage www.infineon.com/rke. In case a matching codeword is received,
decoded and accepted by the decoder the on-board LED will turn on. This signal is also accessible on a 2-pole pin connector and can be used for simple
remote-control applications. More information on the kit is available on request.

TDA5210_testboard_20_schematic.WMF

Figure 5-1

Wireless Components

Schematic of the Evaluation Board

5 - 12

Specification, May 2001

TDA 5210
preliminary

Reference

5.3 Test Board Layouts

tda5210_testboard_20_top.WMF

Figure 5-2

Top Side of the Evaluation Board

tda5210_testboard_20_bot.WMF

Figure 5-3

Wireless Components

Bottom Side of the Evaluation Board

5 - 13

Specification, May 2001

TDA 5210
preliminary

Reference

tda5210_testboard_20_plc.EMF

Figure 5-4

Wireless Components

Component Placement on the Evaluation Board

5 - 14

Specification, May 2001

TDA 5210
preliminary

Reference

5.4 Bill of Materials
The following components are necessary for evaluation of the TDA5210 without
use of a Microchip HCS512 decoder.
Table 5-5 Bill of Materials
Ref

Value

Specification

R1

100kΩ

0805, ± 5%

R2

100kΩ

0805, ± 5%

R3

820kΩ

0805, ± 5%

R4

240kΩ

0805, ± 5%

R5

360kΩ

0805, ± 5%

R6

10kΩ

0805, ± 5%

L1

434 MHz: 15nH
869 MHz: 3.3nH

Toko, PTL2012-F15N0G
Toko, PTL2012-F3N3C

L2

434 MHz: 8.2pF
869 MHz: 3.9nH

0805, COG, ± 0.1pF
Toko, PTL2012-F3N9C

C1

1pF

0805, COG, ± 0.1pF

C2

434 MHz: 4.7pF
869 MHz: 3.9pF

0805, COG, ± 0.1pF
0805, COG, ± 0.1pF

C3

434 MHz: 6.8pF
869 MHz: 5.6pF

0805, COG, ± 0.1pF
0805, COG, ± 0.1pF

C4

100pF

0805, COG, ± 5%

C5

47nF

1206, X7R, ± 10%

C6

434 MHz: 10nH
869 MHz: 3.9pF

Toko, PTL2012-F10N0G
0805, COG, ± 0.1pF

C7

100pF

0805, COG, ± 5%

C8

434 MHz: 33pF
869 MHz: 22pF

0805, COG, ± 5%
0805, COG, ± 5%

C9

100pF

0805, COG, ± 5%

C10

10nF

0805, X7R, ± 10%

C11

10nF

0805, X7R, ± 10%

C12

220pF

0805, COG, ± 5%

C13

47nF

0805, X7R, ± 10%

C14

470pF

0805, COG, ± 5%

C15

47nF

0805, X7R, ± 5%

C16

8.2pF

0805, COG, ± 0.1pF

C17

22pF

0805, COG, ± 1%

C18

22nF

0805, X7R, ± 5%

Q1

(fRF – 10.7MHz)/32 or
(fRF – 10.7MHz)/64

HC49/U, fundamental mode, CL = 12pF,
e.g. 434.2MHz: Jauch Q 13,23437-S11-1323-12-10/20
e.g. 868.4MHz: Jauch Q 13,40155-S11-1323-12-10/20

Wireless Components

5 - 15

Specification, May 2001

TDA 5210
preliminary

Reference

Q2

SFE10.7MA5-A or
SKM107M1-A20-10

Murata
Toko

X2, X3

142-0701-801

Johnson

S1-S3, S6
X1, X3

2-pole pin connector

S4

3-pole pin connector, or not equipped

IC1

TDA 5210

Infineon

Please note that in case of operation at 434 MHz a capacitor has to be soldered
in place L2 and an inductor in place C6.

The following components are necessary in addition to the above mentioned
ones for evaluation of the TDA5210 in conjunction with a Microchip HCS512
decoder.
Table 5-6 Bill of Materials Addendum
Ref

Value

Specification

R7

100kΩ

0805, ± 5%

R8

10kΩ

0805, ± 5%

R9

100kΩ

0805, ± 5%

R10

22kΩ

0805, ± 5%

R11

100Ω

0805, ± 5%

R12

100Ω

0805, ± 5%

R13

100Ω

0805, ± 5%

R14

100Ω

0805, ± 5%

R21

22kΩ

0805, ± 5%

R22

10kΩ

0805, ± 5%

R23

22kΩ

0805, ± 5%

R24

820kΩ

0805, ± 5%

R25

560Ω

0805, ± 5%

C19

10pF

0805, COG, ± 5%

C21

100nF

1206, X7R, ± 10%

C22

100nF

1206, X7R, ± 10%

IC2

HCS512

Microchip
2-pole pin connector

S5, X4-X9
T1, T2

BC 847B

Infineon

D1

LS T670-JL

Infineon

Wireless Components

5 - 16

Specification, May 2001

TDA 5210
preliminary

Reference

Wireless Components

5 - 17

Specification, May 2001

TDA 5210
List of Figures

List of Figures
Figure 2-1

P-TSSOP-28-1 package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2-3

Figure 3-1

IC Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-2

Figure 3-2

Main Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-9

Figure 4-1

LNA Automatic Gain Control Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-2

Figure 4-2

RSSI Level and Permissive AGC Threshold Levels . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-3

Figure 4-3

Data Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-4

Figure 4-4

Determination of Series Capacitance Value for the Quartz Oscillator . . . . . . . . . . . . . .

4-5

Figure 4-5

Data Slicer Threshold Generation with External R-C Integrator . . . . . . . . . . . . . . . . . .

4-7

Figure 4-6

Data Slicer Threshold Generation Utilising the Peak Detector . . . . . . . . . . . . . . . . . . .

4-7

Figure 4-7

ASK/FSK mode datapath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-8

Figure 4-8

Frequency characterstic in case of FSK mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-9

Figure 4-9

Frequency charcteristic in case of ASK mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-10

Figure 4-10 Principle of the precharge circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-11

Figure 4-11 Voltage appearing on C2 during precharging process . . . . . . . . . . . . . . . . . . . . . . . . .

4-12

Figure 4-12 Voltage transient on capacitor C attached to pin 20 . . . . . . . . . . . . . . . . . . . . . . . . . . .

4-13

Figure 5-1

Schematic of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5-12

Figure 5-2

Top Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5-13

Figure 5-3

Bottom Side of the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5-13

Figure 5-4

Component Placement on the Evaluation Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5-14

Wireless Components

List of Figures - 1

Specification, May 2001

TDA 5210
List of Tables

List of Tables
Table 3-1

Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-3

Table 3-2

FSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-10

Table 3-3

CSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-11

Table 3-4

MSEL Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-12

Table 3-5

PDWN Pin Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-13

Table 4-1

Dependence of PLL Overall Division Ratio on FSEL and CSEL . . . . . . . . . . . . . . . . .

4-6

Table 5-1

Absolute Maximum Ratings, Ambient temperature TAMB=-40°C ... + 105°C . . . . . . . .

5-2

Table 5-2

Operating Range, Ambient temperature TAMB= -40°C ... + 105°C . . . . . . . . . . . . . . . .

5-3

Table 5-3

AC/DC Characteristics with TA 25 °C, VVCC = 4.5 ... 5.5 V . . . . . . . . . . . . . . . . . . . . .

5-4

Table 5-4

AC/DC Characteristics with TAMB= -40°C ... + 105°C, VVCC = 4.5 ... 5.5 V . . . . . . . . .

5-9

Table 5-5

Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5-15

Table 5-6

Bill of Materials Addendum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5-16

Wireless Components

List of Tables - 1

Specification, May 2001

This datasheet has been downloaded from:
www.DatasheetCatalog.com
Datasheets for electronic components.